对噪声环境中说话人的身份进行修改的MFCC方法

Yanuar Risah Prayogi
{"title":"对噪声环境中说话人的身份进行修改的MFCC方法","authors":"Yanuar Risah Prayogi","doi":"10.31328/JOINTECS.V4I1.999","DOIUrl":null,"url":null,"abstract":"Beberapa metode ekstraksi fitur untuk sistem identifikasi pembicara memiliki kelemahan yaitu ketika dilingkungan berderau hasil akurasinya menurun. Metode ekstraksi fitur Mel-Frequency Cepstral Coefficient (MFCC) merupakan metode ekstraksi sinyal suara yang peka terhadap derau. Metode MFCC menghasilkan akurasi yang tinggi ketika dilingkungan yang bersih. Sebaliknya ketika di lingkungan yang berderau akurasi yang dihasilkan turun drastis. Penelitian ini mengusulkan metode ekstraksi fitur menggunakan MFCC digabung dengan algoritma deteksi endpoint. Algoritma deteksi endpoint memisahkan daerah speech dan nonspeech. Daerah nonspeech biasanya lebih banyak berisi derau sehingga bisa dijadikan informasi derau. Informasi derau diekstrak dan menghasilkan magnitude frekuensi derau. Uji coba metode yang diusulkan menghasilkan nilai akurasi yang lebih tinggi pada semua tipe derau dan tingkat SNR. Akurasi yang dihasilkan oleh metode yang diusulkan lebih tinggi 14.69% dibanding metode MFCC, 6.4% dibanding metode MFCC+wiener, dan 2.74% dibanding metode MFCC+Spectral Subtraction (SS).","PeriodicalId":259537,"journal":{"name":"JOINTECS (Journal of Information Technology and Computer Science)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modifikasi Metode MFCC untuk Identifikasi Pembicara di Lingkungan Ber-Noise\",\"authors\":\"Yanuar Risah Prayogi\",\"doi\":\"10.31328/JOINTECS.V4I1.999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Beberapa metode ekstraksi fitur untuk sistem identifikasi pembicara memiliki kelemahan yaitu ketika dilingkungan berderau hasil akurasinya menurun. Metode ekstraksi fitur Mel-Frequency Cepstral Coefficient (MFCC) merupakan metode ekstraksi sinyal suara yang peka terhadap derau. Metode MFCC menghasilkan akurasi yang tinggi ketika dilingkungan yang bersih. Sebaliknya ketika di lingkungan yang berderau akurasi yang dihasilkan turun drastis. Penelitian ini mengusulkan metode ekstraksi fitur menggunakan MFCC digabung dengan algoritma deteksi endpoint. Algoritma deteksi endpoint memisahkan daerah speech dan nonspeech. Daerah nonspeech biasanya lebih banyak berisi derau sehingga bisa dijadikan informasi derau. Informasi derau diekstrak dan menghasilkan magnitude frekuensi derau. Uji coba metode yang diusulkan menghasilkan nilai akurasi yang lebih tinggi pada semua tipe derau dan tingkat SNR. Akurasi yang dihasilkan oleh metode yang diusulkan lebih tinggi 14.69% dibanding metode MFCC, 6.4% dibanding metode MFCC+wiener, dan 2.74% dibanding metode MFCC+Spectral Subtraction (SS).\",\"PeriodicalId\":259537,\"journal\":{\"name\":\"JOINTECS (Journal of Information Technology and Computer Science)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOINTECS (Journal of Information Technology and Computer Science)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31328/JOINTECS.V4I1.999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOINTECS (Journal of Information Technology and Computer Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31328/JOINTECS.V4I1.999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

说话人识别系统的一些特征提取方法有一个缺点,那就是斑点周围的斑点率下降。摄入量清化cofcc特征提取方法是一种对derau敏感的语音信号提取方法。当环境清洁时,MFCC方法的准确性很高。相反,在一个环境中,产生的准确率大幅下降。本研究建议使用MFCC的特征提取方法与endpoint检测算法合并。endpoint检测算法将speech和nonspeech的区域分开。nonspeech通常包含更多的derau,因此有更多的derau信息。真皮信息提取并产生真皮频率magnitude。建议的方法试验在所有轴类型和SNR水平上产生更高的精确度。建议方法的准确性大于MFCC方法,6.9%比MFCC+wiener法,2.74%比MFCC+Spectral Subtraction (SS)高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modifikasi Metode MFCC untuk Identifikasi Pembicara di Lingkungan Ber-Noise
Beberapa metode ekstraksi fitur untuk sistem identifikasi pembicara memiliki kelemahan yaitu ketika dilingkungan berderau hasil akurasinya menurun. Metode ekstraksi fitur Mel-Frequency Cepstral Coefficient (MFCC) merupakan metode ekstraksi sinyal suara yang peka terhadap derau. Metode MFCC menghasilkan akurasi yang tinggi ketika dilingkungan yang bersih. Sebaliknya ketika di lingkungan yang berderau akurasi yang dihasilkan turun drastis. Penelitian ini mengusulkan metode ekstraksi fitur menggunakan MFCC digabung dengan algoritma deteksi endpoint. Algoritma deteksi endpoint memisahkan daerah speech dan nonspeech. Daerah nonspeech biasanya lebih banyak berisi derau sehingga bisa dijadikan informasi derau. Informasi derau diekstrak dan menghasilkan magnitude frekuensi derau. Uji coba metode yang diusulkan menghasilkan nilai akurasi yang lebih tinggi pada semua tipe derau dan tingkat SNR. Akurasi yang dihasilkan oleh metode yang diusulkan lebih tinggi 14.69% dibanding metode MFCC, 6.4% dibanding metode MFCC+wiener, dan 2.74% dibanding metode MFCC+Spectral Subtraction (SS).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信