通过眼球运动预测性别

Rishabh Vallabh Varsha Haria, Sahar Mahdie Klim Al Zaidawi, S. Maneth
{"title":"通过眼球运动预测性别","authors":"Rishabh Vallabh Varsha Haria, Sahar Mahdie Klim Al Zaidawi, S. Maneth","doi":"10.48550/arXiv.2206.07442","DOIUrl":null,"url":null,"abstract":"In this paper, we report the first stable results on gender prediction via eye movements. We use a dataset with images of faces as stimuli and with a large number of 370 participants. Stability has two meanings for us: first that we are able to estimate the standard deviation (SD) of a single prediction experiment (it is around 4.1 %); this is achieved by varying the number of participants. And second, we are able to provide a mean accuracy with a very low standard error (SEM): our accuracy is 65.2 %, and the SEM is 0.80 %; this is achieved through many runs of randomly selecting training and test sets for the prediction. Our study shows that two particular classifiers achieve the best accuracies: Random Forests and Logistic Regression. Our results reconfirm previous findings that females are more biased towards the left eyes of the stimuli.","PeriodicalId":129626,"journal":{"name":"Interacción","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Gender via Eye Movements\",\"authors\":\"Rishabh Vallabh Varsha Haria, Sahar Mahdie Klim Al Zaidawi, S. Maneth\",\"doi\":\"10.48550/arXiv.2206.07442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we report the first stable results on gender prediction via eye movements. We use a dataset with images of faces as stimuli and with a large number of 370 participants. Stability has two meanings for us: first that we are able to estimate the standard deviation (SD) of a single prediction experiment (it is around 4.1 %); this is achieved by varying the number of participants. And second, we are able to provide a mean accuracy with a very low standard error (SEM): our accuracy is 65.2 %, and the SEM is 0.80 %; this is achieved through many runs of randomly selecting training and test sets for the prediction. Our study shows that two particular classifiers achieve the best accuracies: Random Forests and Logistic Regression. Our results reconfirm previous findings that females are more biased towards the left eyes of the stimuli.\",\"PeriodicalId\":129626,\"journal\":{\"name\":\"Interacción\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interacción\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2206.07442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interacción","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.07442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们报告了通过眼动预测性别的第一个稳定结果。我们使用了一个数据集,其中有面孔图像作为刺激,有370名参与者。稳定性对我们来说有两个含义:首先,我们能够估计单个预测实验的标准差(SD)(约为4.1%);这是通过改变参与者的数量来实现的。其次,我们能够以非常低的标准误差(SEM)提供平均精度:我们的精度为65.2%,SEM为0.80%;这是通过多次随机选择预测的训练集和测试集来实现的。我们的研究表明,两种特殊的分类器达到了最好的精度:随机森林和逻辑回归。我们的研究结果再次证实了之前的发现,即女性更倾向于刺激的左眼。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Gender via Eye Movements
In this paper, we report the first stable results on gender prediction via eye movements. We use a dataset with images of faces as stimuli and with a large number of 370 participants. Stability has two meanings for us: first that we are able to estimate the standard deviation (SD) of a single prediction experiment (it is around 4.1 %); this is achieved by varying the number of participants. And second, we are able to provide a mean accuracy with a very low standard error (SEM): our accuracy is 65.2 %, and the SEM is 0.80 %; this is achieved through many runs of randomly selecting training and test sets for the prediction. Our study shows that two particular classifiers achieve the best accuracies: Random Forests and Logistic Regression. Our results reconfirm previous findings that females are more biased towards the left eyes of the stimuli.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信