{"title":"基于累积多平面影像及典型相关分析的肺结节恶性分类","authors":"S. A. Abdelrahman, M. Abdelwahab, M. Sayed","doi":"10.1109/ISM.2018.00012","DOIUrl":null,"url":null,"abstract":"Appearance of a small round or oval shaped in a Computed Tomography (CT) scan of lung is an alarm to suspicion of lung cancer. In order to avoid the misdiagnose of lung cancer at early stage, Computer Aided Diagnosis (CAD) assists oncologists to classify pulmonary nodules as malignant (cancerous) or benign (noncancerous). This paper introduces a novel approach for pulmonary nodules classification employing three accumulated views (top, front, and side) of CT slices and Canonical Correlation Analysis (CCA). Nodule is extracted from 2D CT slice to obtain the Region of Interest (ROI) patch. All patches from sequential slices are accumulated from three different views. Vector representation of each view is correlated with two training sets, malignant and benign sets, employing CCA in spatial and Radon Transform (RT) domain. According to the correlation coefficients, each view is classified and the final classification decision is taken based on the priority decision. For training and testing, 1010 patients are downloaded from Lung Image Database Consortium (LIDC). The final results show that the proposed method achieved the best performance with an accuracy of 90.93% compared with existing methods.","PeriodicalId":308698,"journal":{"name":"2018 IEEE International Symposium on Multimedia (ISM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Malignancy Classification of Lung Nodule Based on Accumulated Multi Planar Views and Canonical Correlation Analysis\",\"authors\":\"S. A. Abdelrahman, M. Abdelwahab, M. Sayed\",\"doi\":\"10.1109/ISM.2018.00012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Appearance of a small round or oval shaped in a Computed Tomography (CT) scan of lung is an alarm to suspicion of lung cancer. In order to avoid the misdiagnose of lung cancer at early stage, Computer Aided Diagnosis (CAD) assists oncologists to classify pulmonary nodules as malignant (cancerous) or benign (noncancerous). This paper introduces a novel approach for pulmonary nodules classification employing three accumulated views (top, front, and side) of CT slices and Canonical Correlation Analysis (CCA). Nodule is extracted from 2D CT slice to obtain the Region of Interest (ROI) patch. All patches from sequential slices are accumulated from three different views. Vector representation of each view is correlated with two training sets, malignant and benign sets, employing CCA in spatial and Radon Transform (RT) domain. According to the correlation coefficients, each view is classified and the final classification decision is taken based on the priority decision. For training and testing, 1010 patients are downloaded from Lung Image Database Consortium (LIDC). The final results show that the proposed method achieved the best performance with an accuracy of 90.93% compared with existing methods.\",\"PeriodicalId\":308698,\"journal\":{\"name\":\"2018 IEEE International Symposium on Multimedia (ISM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Multimedia (ISM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2018.00012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2018.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Malignancy Classification of Lung Nodule Based on Accumulated Multi Planar Views and Canonical Correlation Analysis
Appearance of a small round or oval shaped in a Computed Tomography (CT) scan of lung is an alarm to suspicion of lung cancer. In order to avoid the misdiagnose of lung cancer at early stage, Computer Aided Diagnosis (CAD) assists oncologists to classify pulmonary nodules as malignant (cancerous) or benign (noncancerous). This paper introduces a novel approach for pulmonary nodules classification employing three accumulated views (top, front, and side) of CT slices and Canonical Correlation Analysis (CCA). Nodule is extracted from 2D CT slice to obtain the Region of Interest (ROI) patch. All patches from sequential slices are accumulated from three different views. Vector representation of each view is correlated with two training sets, malignant and benign sets, employing CCA in spatial and Radon Transform (RT) domain. According to the correlation coefficients, each view is classified and the final classification decision is taken based on the priority decision. For training and testing, 1010 patients are downloaded from Lung Image Database Consortium (LIDC). The final results show that the proposed method achieved the best performance with an accuracy of 90.93% compared with existing methods.