Yukiya Taki, K. Kato, Kazunori Terada, Kensuke Tobitani
{"title":"考虑属性信息的视觉印象估计系统","authors":"Yukiya Taki, K. Kato, Kazunori Terada, Kensuke Tobitani","doi":"10.1117/12.2691716","DOIUrl":null,"url":null,"abstract":"Detailed identification of visual impressions of objects by attributes can be leveraged to develop products and improve customer satisfaction. In this study, we propose a method to estimate Kansei (affective) information for each attribute, which is the visual impression received from the image. For each attribute, we created a dataset with Kansei indices. By fine-tuning the created dataset to combine attribute information with the output of ResNet18 which was already trained with ImageNet to output indexes, we confirmed that the correlation coefficients for multiple item ratings were higher than those of a deep learning model without attribute information.","PeriodicalId":295011,"journal":{"name":"International Conference on Quality Control by Artificial Vision","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual impression estimation system considering attribute information\",\"authors\":\"Yukiya Taki, K. Kato, Kazunori Terada, Kensuke Tobitani\",\"doi\":\"10.1117/12.2691716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detailed identification of visual impressions of objects by attributes can be leveraged to develop products and improve customer satisfaction. In this study, we propose a method to estimate Kansei (affective) information for each attribute, which is the visual impression received from the image. For each attribute, we created a dataset with Kansei indices. By fine-tuning the created dataset to combine attribute information with the output of ResNet18 which was already trained with ImageNet to output indexes, we confirmed that the correlation coefficients for multiple item ratings were higher than those of a deep learning model without attribute information.\",\"PeriodicalId\":295011,\"journal\":{\"name\":\"International Conference on Quality Control by Artificial Vision\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Quality Control by Artificial Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2691716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Quality Control by Artificial Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2691716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visual impression estimation system considering attribute information
Detailed identification of visual impressions of objects by attributes can be leveraged to develop products and improve customer satisfaction. In this study, we propose a method to estimate Kansei (affective) information for each attribute, which is the visual impression received from the image. For each attribute, we created a dataset with Kansei indices. By fine-tuning the created dataset to combine attribute information with the output of ResNet18 which was already trained with ImageNet to output indexes, we confirmed that the correlation coefficients for multiple item ratings were higher than those of a deep learning model without attribute information.