对风险的挑战

The Finance Pub Date : 2015-05-13 DOI:10.3917/FINA.361.0007
Benjamin Hamidi, Christophe Hurlin, P. Kouontchou, Bertrand B. Maillet
{"title":"对风险的挑战","authors":"Benjamin Hamidi, Christophe Hurlin, P. Kouontchou, Bertrand B. Maillet","doi":"10.3917/FINA.361.0007","DOIUrl":null,"url":null,"abstract":"This paper introduces a new class of models for the Value-at-Risk (VaR) and Expected Shortfall (ES), called the Dynamic AutoRegressive Expectiles (DARE) models. Our approach is based on a weighted average of expectile-based VaR and ES models, i.e. the Conditional Autoregressive Expectile (CARE) models introduced by Taylor (2008a) and Kuan et al. (2009). First, we briefly present the main non-parametric, parametric and semi-parametric estimation methods for VaR and ES. Secondly, we detail the DARE approach and show how the expectiles can be used to estimate quantile risk measures. Thirdly, we use various backtesting tests to compare the DARE approach to other traditional methods for computing VaR forecasts on the French stock market. Finally, we evaluate the impact of several conditional weighting functions and determine the optimal weights in order to dynamically select the more relevant global quantile model.","PeriodicalId":251115,"journal":{"name":"The Finance","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A DARE for VaR\",\"authors\":\"Benjamin Hamidi, Christophe Hurlin, P. Kouontchou, Bertrand B. Maillet\",\"doi\":\"10.3917/FINA.361.0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new class of models for the Value-at-Risk (VaR) and Expected Shortfall (ES), called the Dynamic AutoRegressive Expectiles (DARE) models. Our approach is based on a weighted average of expectile-based VaR and ES models, i.e. the Conditional Autoregressive Expectile (CARE) models introduced by Taylor (2008a) and Kuan et al. (2009). First, we briefly present the main non-parametric, parametric and semi-parametric estimation methods for VaR and ES. Secondly, we detail the DARE approach and show how the expectiles can be used to estimate quantile risk measures. Thirdly, we use various backtesting tests to compare the DARE approach to other traditional methods for computing VaR forecasts on the French stock market. Finally, we evaluate the impact of several conditional weighting functions and determine the optimal weights in order to dynamically select the more relevant global quantile model.\",\"PeriodicalId\":251115,\"journal\":{\"name\":\"The Finance\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3917/FINA.361.0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3917/FINA.361.0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了一类新的风险价值(VaR)和预期缺口(ES)模型,称为动态自回归期望(DARE)模型。我们的方法是基于基于预期的VaR和ES模型的加权平均值,即Taylor (2008a)和Kuan et al.(2009)引入的条件自回归预期(CARE)模型。首先,我们简要介绍了VaR和ES的主要非参数、参数和半参数估计方法。其次,我们详细介绍了DARE方法,并展示了如何使用期望值来估计分位数风险措施。第三,我们使用各种回测测试来比较DARE方法与其他传统方法计算法国股票市场的VaR预测。最后,我们评估了几个条件加权函数的影响,并确定了最优权重,以便动态选择更相关的全局分位数模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A DARE for VaR
This paper introduces a new class of models for the Value-at-Risk (VaR) and Expected Shortfall (ES), called the Dynamic AutoRegressive Expectiles (DARE) models. Our approach is based on a weighted average of expectile-based VaR and ES models, i.e. the Conditional Autoregressive Expectile (CARE) models introduced by Taylor (2008a) and Kuan et al. (2009). First, we briefly present the main non-parametric, parametric and semi-parametric estimation methods for VaR and ES. Secondly, we detail the DARE approach and show how the expectiles can be used to estimate quantile risk measures. Thirdly, we use various backtesting tests to compare the DARE approach to other traditional methods for computing VaR forecasts on the French stock market. Finally, we evaluate the impact of several conditional weighting functions and determine the optimal weights in order to dynamically select the more relevant global quantile model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信