交数的局部常数

A. Mihatsch
{"title":"交数的局部常数","authors":"A. Mihatsch","doi":"10.2140/ant.2022.16.505","DOIUrl":null,"url":null,"abstract":"We prove that, in certain situations, intersection numbers on formal schemes that come in profinite families vary locally constantly in the parameter. To this end, we define the product $S\\times M$ of a profinite set $S$ with a locally noetherian formal scheme $M$ and study intersections thereon. Our application is to the Arithmetic Fundamental Lemma of W. Zhang where the result helps to remove a restriction in its recent proof, cf. arXiv:1909.02697.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Local Constancy of Intersection Numbers\",\"authors\":\"A. Mihatsch\",\"doi\":\"10.2140/ant.2022.16.505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that, in certain situations, intersection numbers on formal schemes that come in profinite families vary locally constantly in the parameter. To this end, we define the product $S\\\\times M$ of a profinite set $S$ with a locally noetherian formal scheme $M$ and study intersections thereon. Our application is to the Arithmetic Fundamental Lemma of W. Zhang where the result helps to remove a restriction in its recent proof, cf. arXiv:1909.02697.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2022.16.505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/ant.2022.16.505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们证明了在某些情况下,无限族形式格式上的交数在参数上局部恒定变化。为此,我们定义了具有局部noether形式格式的有限集$S$的乘积$S\乘以$M$,并研究了其交点。我们的应用是W. Zhang的算术基本引理,其结果有助于消除其最近证明中的一个限制,参见arXiv:1909.02697。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Constancy of Intersection Numbers
We prove that, in certain situations, intersection numbers on formal schemes that come in profinite families vary locally constantly in the parameter. To this end, we define the product $S\times M$ of a profinite set $S$ with a locally noetherian formal scheme $M$ and study intersections thereon. Our application is to the Arithmetic Fundamental Lemma of W. Zhang where the result helps to remove a restriction in its recent proof, cf. arXiv:1909.02697.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信