{"title":"利用中继节点提高战术地面无线网络的可扩展性","authors":"Zachary Bunting, A. Narula-Tam, E. Modiano","doi":"10.1109/MILCOM.2013.222","DOIUrl":null,"url":null,"abstract":"Scalability is an issue for ground tactical radio networks, as increasing numbers of nodes and flows compete for the capacity of each link. The introduction of a relay node allows additional routes for traffic flows. Greater benefit is achieved by fixing the relay node at a higher elevation to allow it to broadcast to all other nodes simultaneously, thereby reducing the number of hops packets must travel. We use a combination of linear programming (LP) and novel bounds on the achievable network performance to investigate the benefits of such a relay node. We show that a relay node provides moderate improvement under an all-to-all unicast traffic model and more substantial improvement for broadcast traffic patterns.","PeriodicalId":379382,"journal":{"name":"MILCOM 2013 - 2013 IEEE Military Communications Conference","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Scalability in Tactical Ground Radio Networks by Using Relay Nodes\",\"authors\":\"Zachary Bunting, A. Narula-Tam, E. Modiano\",\"doi\":\"10.1109/MILCOM.2013.222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scalability is an issue for ground tactical radio networks, as increasing numbers of nodes and flows compete for the capacity of each link. The introduction of a relay node allows additional routes for traffic flows. Greater benefit is achieved by fixing the relay node at a higher elevation to allow it to broadcast to all other nodes simultaneously, thereby reducing the number of hops packets must travel. We use a combination of linear programming (LP) and novel bounds on the achievable network performance to investigate the benefits of such a relay node. We show that a relay node provides moderate improvement under an all-to-all unicast traffic model and more substantial improvement for broadcast traffic patterns.\",\"PeriodicalId\":379382,\"journal\":{\"name\":\"MILCOM 2013 - 2013 IEEE Military Communications Conference\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MILCOM 2013 - 2013 IEEE Military Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM.2013.222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2013 - 2013 IEEE Military Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.2013.222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving Scalability in Tactical Ground Radio Networks by Using Relay Nodes
Scalability is an issue for ground tactical radio networks, as increasing numbers of nodes and flows compete for the capacity of each link. The introduction of a relay node allows additional routes for traffic flows. Greater benefit is achieved by fixing the relay node at a higher elevation to allow it to broadcast to all other nodes simultaneously, thereby reducing the number of hops packets must travel. We use a combination of linear programming (LP) and novel bounds on the achievable network performance to investigate the benefits of such a relay node. We show that a relay node provides moderate improvement under an all-to-all unicast traffic model and more substantial improvement for broadcast traffic patterns.