Ważewski枝晶基团的拓扑性质

Bruno Duchesne
{"title":"Ważewski枝晶基团的拓扑性质","authors":"Bruno Duchesne","doi":"10.5802/jep.121","DOIUrl":null,"url":null,"abstract":"Homeomorphism groups of generalized Wa\\.zewski dendrites act on the infinite countable set of branch points of the dendrite and thus have a nice Polish topology. In this paper, we study them in the light of this Polish topology. The group of the universal Wa\\.zewski dendrite $D_\\infty$ is more characteristic than the others because it is the unique one with a dense conjugacy class. For this group $G_\\infty$, we show some of its topological properties like existence of a comeager conjugacy class, the Steinhaus property, automatic continuity and the small index subgroup property. Moreover, we identify the universal minimal flow of $G_\\infty$. This allows us to prove that point-stabilizers in $G_\\infty$ are amenable and to describe the universal Furstenberg boundary of $G_\\infty$.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Topological properties of Ważewski dendrite groups\",\"authors\":\"Bruno Duchesne\",\"doi\":\"10.5802/jep.121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Homeomorphism groups of generalized Wa\\\\.zewski dendrites act on the infinite countable set of branch points of the dendrite and thus have a nice Polish topology. In this paper, we study them in the light of this Polish topology. The group of the universal Wa\\\\.zewski dendrite $D_\\\\infty$ is more characteristic than the others because it is the unique one with a dense conjugacy class. For this group $G_\\\\infty$, we show some of its topological properties like existence of a comeager conjugacy class, the Steinhaus property, automatic continuity and the small index subgroup property. Moreover, we identify the universal minimal flow of $G_\\\\infty$. This allows us to prove that point-stabilizers in $G_\\\\infty$ are amenable and to describe the universal Furstenberg boundary of $G_\\\\infty$.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

广义Ważewski枝晶的同胚群作用于枝晶分支点的无限可数集合,因而具有很好的波兰拓扑。本文在波兰拓扑的基础上对它们进行了研究。普遍的Ważewski枝晶$D_\infty$群比其他群更有特点,因为它是唯一具有密集共轭类的群。对于这个群$G_\infty$,我们给出了它的一些拓扑性质,如共共轭类的存在性、Steinhaus性质、自动连续性和小索引子群性质。此外,我们确定了$G_\infty$的通用最小流量。这使我们证明了$G_\infty$中的点稳定子是可服从的,并描述了$G_\infty$的普适Furstenberg边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological properties of Ważewski dendrite groups
Homeomorphism groups of generalized Wa\.zewski dendrites act on the infinite countable set of branch points of the dendrite and thus have a nice Polish topology. In this paper, we study them in the light of this Polish topology. The group of the universal Wa\.zewski dendrite $D_\infty$ is more characteristic than the others because it is the unique one with a dense conjugacy class. For this group $G_\infty$, we show some of its topological properties like existence of a comeager conjugacy class, the Steinhaus property, automatic continuity and the small index subgroup property. Moreover, we identify the universal minimal flow of $G_\infty$. This allows us to prove that point-stabilizers in $G_\infty$ are amenable and to describe the universal Furstenberg boundary of $G_\infty$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信