基于尺度图的cnn -朴素贝叶斯混合分类器的心脏病分类

Ajjey S. B., S. S., Sowmeeya S. R., Ajin R. Nair, M. Raju
{"title":"基于尺度图的cnn -朴素贝叶斯混合分类器的心脏病分类","authors":"Ajjey S. B., S. S., Sowmeeya S. R., Ajin R. Nair, M. Raju","doi":"10.1109/wispnet54241.2022.9767153","DOIUrl":null,"url":null,"abstract":"The proper monitoring of ECG will help to identify patients with cardiac problems. In the last two decades, many lives have been saved due to the automated prediction of heart diseases with the help of ECG signals. This article proposes a hybrid CNN-Naive Bayes classifier for classifying Normal Sinus Rhythm, Abnormal Arrhythmia, and Congestive Heart Failure from the MIT-BIH arrhythmia database. The one-dimensional ECG signals are converted to two-dimensional scalogram images using continuous wavelet transform. The scalogram images eliminate noise filtering and conventional feature extraction steps that may lead to loss of beats. The proposed architecture uses GoogLeNet to extract independent and discriminating features, which aids the Naive Bayes classifier to attain a high accuracy of 98.76%.","PeriodicalId":432794,"journal":{"name":"2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Scalogram Based Heart Disease Classification using Hybrid CNN-Naive Bayes Classifier\",\"authors\":\"Ajjey S. B., S. S., Sowmeeya S. R., Ajin R. Nair, M. Raju\",\"doi\":\"10.1109/wispnet54241.2022.9767153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proper monitoring of ECG will help to identify patients with cardiac problems. In the last two decades, many lives have been saved due to the automated prediction of heart diseases with the help of ECG signals. This article proposes a hybrid CNN-Naive Bayes classifier for classifying Normal Sinus Rhythm, Abnormal Arrhythmia, and Congestive Heart Failure from the MIT-BIH arrhythmia database. The one-dimensional ECG signals are converted to two-dimensional scalogram images using continuous wavelet transform. The scalogram images eliminate noise filtering and conventional feature extraction steps that may lead to loss of beats. The proposed architecture uses GoogLeNet to extract independent and discriminating features, which aids the Naive Bayes classifier to attain a high accuracy of 98.76%.\",\"PeriodicalId\":432794,\"journal\":{\"name\":\"2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/wispnet54241.2022.9767153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/wispnet54241.2022.9767153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

适当的心电图监测将有助于识别患者的心脏问题。在过去的二十年中,由于借助ECG信号自动预测心脏病,许多生命得以挽救。本文提出一种cnn -朴素贝叶斯混合分类器,用于从MIT-BIH心律失常数据库中分类正常窦性心律、异常心律失常和充血性心力衰竭。利用连续小波变换将一维心电信号转换为二维尺度图图像。尺度图图像消除了可能导致节拍丢失的噪声滤波和常规特征提取步骤。该体系结构利用GoogLeNet提取独立特征和判别特征,使朴素贝叶斯分类器的准确率达到98.76%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalogram Based Heart Disease Classification using Hybrid CNN-Naive Bayes Classifier
The proper monitoring of ECG will help to identify patients with cardiac problems. In the last two decades, many lives have been saved due to the automated prediction of heart diseases with the help of ECG signals. This article proposes a hybrid CNN-Naive Bayes classifier for classifying Normal Sinus Rhythm, Abnormal Arrhythmia, and Congestive Heart Failure from the MIT-BIH arrhythmia database. The one-dimensional ECG signals are converted to two-dimensional scalogram images using continuous wavelet transform. The scalogram images eliminate noise filtering and conventional feature extraction steps that may lead to loss of beats. The proposed architecture uses GoogLeNet to extract independent and discriminating features, which aids the Naive Bayes classifier to attain a high accuracy of 98.76%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信