基于物理形态学模型的碎石丘防波堤床型改变数值分析[SeoulFoam]

Y. Cho
{"title":"基于物理形态学模型的碎石丘防波堤床型改变数值分析[SeoulFoam]","authors":"Y. Cho","doi":"10.20481/kscdp.2021.8.3.151","DOIUrl":null,"url":null,"abstract":"Among the many scouring-protection works near a rubble mound breakwater, stacking armoring rocks in multiple or single layers are most popular. The rationale of these scouring-protection works is based on the Equilibrium regime or the maximum scouring depth. However, considering natural beaches, which constantly change their shape according to sea waves conditions, the equilibrium regime or the maximum scouring depth mentioned above seems to foot on the fragile physical background. In this study, in order to test the above hypothesis, numerical simulations were carried out on the partial reflection from the slopes of rubble mound breakwater, and its ensuing standing waves formed in the front seas of a breakwater, the change in the bed profiles due to the formation of standing waves, and scouring depth at the base of a rubble mound breakwater. In doing so, numerical simulations were implemented using OlaFoam, an OpenFoam-based toolbox, and SeoulFoam (Cho, 2020), a physics-based morphology model. Numerical results show that the wave length of sand waves is closely linked with the incoming wave period, while amplitudes of sand waves are determined by incoming wave height. Moreover, the seabed profiles underwent significant changes due to the presence of a rubble mound breakwater. It was shown that the size of sand waves increased when compared before the installation, and the shape of sand waves is getting skewed toward the shore direction. It was also shown that as exposure time to standing waves increased, the amplitude of sand waves also increased, and the scouring depth near the base of a breakwater increased. These results are contrary to the Equilibrium regime, and the scouring prevention works based on the stacking of armoring rocks should be re-evaluated.","PeriodicalId":326564,"journal":{"name":"Korea Society of Coastal Disaster Prevention","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Numerical Analysis of Modified Bed-profiles due to the Presence of a Rubble Mound Breakwater using Physics-Based Morphology Model[SeoulFoam]\",\"authors\":\"Y. Cho\",\"doi\":\"10.20481/kscdp.2021.8.3.151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the many scouring-protection works near a rubble mound breakwater, stacking armoring rocks in multiple or single layers are most popular. The rationale of these scouring-protection works is based on the Equilibrium regime or the maximum scouring depth. However, considering natural beaches, which constantly change their shape according to sea waves conditions, the equilibrium regime or the maximum scouring depth mentioned above seems to foot on the fragile physical background. In this study, in order to test the above hypothesis, numerical simulations were carried out on the partial reflection from the slopes of rubble mound breakwater, and its ensuing standing waves formed in the front seas of a breakwater, the change in the bed profiles due to the formation of standing waves, and scouring depth at the base of a rubble mound breakwater. In doing so, numerical simulations were implemented using OlaFoam, an OpenFoam-based toolbox, and SeoulFoam (Cho, 2020), a physics-based morphology model. Numerical results show that the wave length of sand waves is closely linked with the incoming wave period, while amplitudes of sand waves are determined by incoming wave height. Moreover, the seabed profiles underwent significant changes due to the presence of a rubble mound breakwater. It was shown that the size of sand waves increased when compared before the installation, and the shape of sand waves is getting skewed toward the shore direction. It was also shown that as exposure time to standing waves increased, the amplitude of sand waves also increased, and the scouring depth near the base of a breakwater increased. These results are contrary to the Equilibrium regime, and the scouring prevention works based on the stacking of armoring rocks should be re-evaluated.\",\"PeriodicalId\":326564,\"journal\":{\"name\":\"Korea Society of Coastal Disaster Prevention\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korea Society of Coastal Disaster Prevention\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20481/kscdp.2021.8.3.151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korea Society of Coastal Disaster Prevention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20481/kscdp.2021.8.3.151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在碎石丘防波堤附近的众多冲刷防护工程中,多层或单层堆砌铠装岩是最受欢迎的。这些防冲工程的基本原理是基于平衡状态或最大冲刷深度。然而,考虑到自然海滩会根据海浪条件不断改变其形状,上述平衡状态或最大冲刷深度似乎是建立在脆弱的物理背景之上的。为了验证上述假设,本研究对碎石丘防波堤坡面部分反射及其在防波堤前海形成的驻波、驻波形成后河床剖面的变化、碎石丘防波堤底部冲刷深度进行了数值模拟。在此过程中,使用基于openfoam的工具箱OlaFoam和基于物理的形态学模型SeoulFoam (Cho, 2020)进行了数值模拟。数值计算结果表明,沙波的波长与入射波周期密切相关,而沙波的振幅则由入射波高决定。此外,由于碎石丘防波堤的存在,海底剖面发生了重大变化。结果表明,与安装前相比,沙波的大小有所增加,沙波的形状向海岸方向倾斜。随着驻波作用时间的增加,沙波的振幅也随之增大,防波堤基底附近的冲刷深度也随之增大。这些结果与平衡状态相反,应重新评价基于铠装岩堆积的防冲工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Analysis of Modified Bed-profiles due to the Presence of a Rubble Mound Breakwater using Physics-Based Morphology Model[SeoulFoam]
Among the many scouring-protection works near a rubble mound breakwater, stacking armoring rocks in multiple or single layers are most popular. The rationale of these scouring-protection works is based on the Equilibrium regime or the maximum scouring depth. However, considering natural beaches, which constantly change their shape according to sea waves conditions, the equilibrium regime or the maximum scouring depth mentioned above seems to foot on the fragile physical background. In this study, in order to test the above hypothesis, numerical simulations were carried out on the partial reflection from the slopes of rubble mound breakwater, and its ensuing standing waves formed in the front seas of a breakwater, the change in the bed profiles due to the formation of standing waves, and scouring depth at the base of a rubble mound breakwater. In doing so, numerical simulations were implemented using OlaFoam, an OpenFoam-based toolbox, and SeoulFoam (Cho, 2020), a physics-based morphology model. Numerical results show that the wave length of sand waves is closely linked with the incoming wave period, while amplitudes of sand waves are determined by incoming wave height. Moreover, the seabed profiles underwent significant changes due to the presence of a rubble mound breakwater. It was shown that the size of sand waves increased when compared before the installation, and the shape of sand waves is getting skewed toward the shore direction. It was also shown that as exposure time to standing waves increased, the amplitude of sand waves also increased, and the scouring depth near the base of a breakwater increased. These results are contrary to the Equilibrium regime, and the scouring prevention works based on the stacking of armoring rocks should be re-evaluated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信