计算最大递增子序列的线性时间算法

J. Na
{"title":"计算最大递增子序列的线性时间算法","authors":"J. Na","doi":"10.30693/smj.2023.12.6.9","DOIUrl":null,"url":null,"abstract":"The longest increasing subsequence is a fundamental problem which has been studied for a long time in computer science. In this paper, we consider the maximal increasing subsequence problem where the constraint is released from the longest to the maximal. For two kinds of increasing (monotone increasing and strictly increasing), we propose linear-time algorithms computing a maximal increasing subsequence of an input sequence from an alphabet . Our algorithm for computing a maximal monotone increasing subsequence requires space and our algorithm for computing a maximal strictly increasing subsequence requires space.","PeriodicalId":249252,"journal":{"name":"Korean Institute of Smart Media","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear-time algorithms for computing a maximal increasing subsequence\",\"authors\":\"J. Na\",\"doi\":\"10.30693/smj.2023.12.6.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The longest increasing subsequence is a fundamental problem which has been studied for a long time in computer science. In this paper, we consider the maximal increasing subsequence problem where the constraint is released from the longest to the maximal. For two kinds of increasing (monotone increasing and strictly increasing), we propose linear-time algorithms computing a maximal increasing subsequence of an input sequence from an alphabet . Our algorithm for computing a maximal monotone increasing subsequence requires space and our algorithm for computing a maximal strictly increasing subsequence requires space.\",\"PeriodicalId\":249252,\"journal\":{\"name\":\"Korean Institute of Smart Media\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Institute of Smart Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30693/smj.2023.12.6.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Institute of Smart Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30693/smj.2023.12.6.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最长递增子序列是计算机科学中一个研究已久的基本问题。本文研究了将约束从最长放宽到最大的极大递增子序列问题。对于两种递增(单调递增和严格递增),我们提出了从字母表中计算输入序列的最大递增子序列的线性时间算法。计算极大单调递增子序列的算法需要空间,计算极大严格递增子序列的算法需要空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear-time algorithms for computing a maximal increasing subsequence
The longest increasing subsequence is a fundamental problem which has been studied for a long time in computer science. In this paper, we consider the maximal increasing subsequence problem where the constraint is released from the longest to the maximal. For two kinds of increasing (monotone increasing and strictly increasing), we propose linear-time algorithms computing a maximal increasing subsequence of an input sequence from an alphabet . Our algorithm for computing a maximal monotone increasing subsequence requires space and our algorithm for computing a maximal strictly increasing subsequence requires space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信