基于t-SNE的非线性流形嵌入关键字定位

George Retsinas, N. Stamatopoulos, G. Louloudis, Giorgos Sfikas, B. Gatos
{"title":"基于t-SNE的非线性流形嵌入关键字定位","authors":"George Retsinas, N. Stamatopoulos, G. Louloudis, Giorgos Sfikas, B. Gatos","doi":"10.1109/ICDAR.2017.86","DOIUrl":null,"url":null,"abstract":"Nonlinear manifold embedding has attracted considerable attention due to its highly-desired property of efficiently encoding local structure, i.e. intrinsic space properties, into a low-dimensional space. The benefit of such an approach is twofold: it leads to compact representations while addressing the often-encountered curse of dimensionality. The latter plays an important role in retrieval applications, such as keyword spotting, where a sorted list of retrieved objects with respect to a distance metric is required. In this work, we explore the efficiency of the popular manifold embedding method t-distributed Stochastic Neighbor Embedding (t-SNE) on the Query-by-Example keyword spotting task. The main contribution of this work is the extension of t-SNE in order to support out-of-sample (OOS) embedding which is essential for mapping query images to the embedding space. The experimental results demonstrate a significant increase in keyword spotting performance when the word similarity is calculated on the embedding space.","PeriodicalId":433676,"journal":{"name":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Nonlinear Manifold Embedding on Keyword Spotting Using t-SNE\",\"authors\":\"George Retsinas, N. Stamatopoulos, G. Louloudis, Giorgos Sfikas, B. Gatos\",\"doi\":\"10.1109/ICDAR.2017.86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonlinear manifold embedding has attracted considerable attention due to its highly-desired property of efficiently encoding local structure, i.e. intrinsic space properties, into a low-dimensional space. The benefit of such an approach is twofold: it leads to compact representations while addressing the often-encountered curse of dimensionality. The latter plays an important role in retrieval applications, such as keyword spotting, where a sorted list of retrieved objects with respect to a distance metric is required. In this work, we explore the efficiency of the popular manifold embedding method t-distributed Stochastic Neighbor Embedding (t-SNE) on the Query-by-Example keyword spotting task. The main contribution of this work is the extension of t-SNE in order to support out-of-sample (OOS) embedding which is essential for mapping query images to the embedding space. The experimental results demonstrate a significant increase in keyword spotting performance when the word similarity is calculated on the embedding space.\",\"PeriodicalId\":433676,\"journal\":{\"name\":\"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2017.86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2017.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

非线性流形嵌入由于其在低维空间中有效编码局部结构(即固有空间性质)的特性而受到广泛关注。这种方法的好处是双重的:它导致了紧凑的表示,同时解决了经常遇到的维度诅咒。后者在检索应用程序中起着重要作用,例如关键字查找,其中需要根据距离度量排序检索对象的列表。在这项工作中,我们探讨了流行的流形嵌入方法t-分布随机邻居嵌入(t-SNE)在按例查询关键字识别任务中的效率。这项工作的主要贡献是扩展了t-SNE,以支持样本外(OOS)嵌入,这对于将查询图像映射到嵌入空间至关重要。实验结果表明,当在嵌入空间上计算词相似度时,关键词识别性能显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear Manifold Embedding on Keyword Spotting Using t-SNE
Nonlinear manifold embedding has attracted considerable attention due to its highly-desired property of efficiently encoding local structure, i.e. intrinsic space properties, into a low-dimensional space. The benefit of such an approach is twofold: it leads to compact representations while addressing the often-encountered curse of dimensionality. The latter plays an important role in retrieval applications, such as keyword spotting, where a sorted list of retrieved objects with respect to a distance metric is required. In this work, we explore the efficiency of the popular manifold embedding method t-distributed Stochastic Neighbor Embedding (t-SNE) on the Query-by-Example keyword spotting task. The main contribution of this work is the extension of t-SNE in order to support out-of-sample (OOS) embedding which is essential for mapping query images to the embedding space. The experimental results demonstrate a significant increase in keyword spotting performance when the word similarity is calculated on the embedding space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信