植物叶片形态分类与共享近邻聚类

MAED '12 Pub Date : 2012-11-02 DOI:10.1145/2390832.2390842
Amel Hamzaoui, A. Joly, H. Goëau
{"title":"植物叶片形态分类与共享近邻聚类","authors":"Amel Hamzaoui, A. Joly, H. Goëau","doi":"10.1145/2390832.2390842","DOIUrl":null,"url":null,"abstract":"This paper presents an original experiment aimed at evaluating if state-of-the-art visual clustering techniques are able to automatically recover morphological classifications built by the botanists themselves. The clustering phase is based on a recent Shared-Nearest Neighbours (SNN) clustering algorithm, which allows to combine effectively heterogeneous visual information sources at the category level. Each resulting cluster is associated with an optimal selection of visual similarities, allowing to discover diverse and meaningful morphological categories even if we use a blind set of visual sources as input. Experiments are performed on ImageCLEF 2011 plant identification dataset, that was specifically enriched in this work with morphological attributes tags (annotated by expert botanists). The results are very promising, since all clusters discovered automatically can be easily matched to one node of the morphological tree built by the botanists.","PeriodicalId":173175,"journal":{"name":"MAED '12","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Plant leaves morphological categorization with shared nearest neighbours clustering\",\"authors\":\"Amel Hamzaoui, A. Joly, H. Goëau\",\"doi\":\"10.1145/2390832.2390842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an original experiment aimed at evaluating if state-of-the-art visual clustering techniques are able to automatically recover morphological classifications built by the botanists themselves. The clustering phase is based on a recent Shared-Nearest Neighbours (SNN) clustering algorithm, which allows to combine effectively heterogeneous visual information sources at the category level. Each resulting cluster is associated with an optimal selection of visual similarities, allowing to discover diverse and meaningful morphological categories even if we use a blind set of visual sources as input. Experiments are performed on ImageCLEF 2011 plant identification dataset, that was specifically enriched in this work with morphological attributes tags (annotated by expert botanists). The results are very promising, since all clusters discovered automatically can be easily matched to one node of the morphological tree built by the botanists.\",\"PeriodicalId\":173175,\"journal\":{\"name\":\"MAED '12\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MAED '12\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2390832.2390842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAED '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2390832.2390842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一个原始实验,旨在评估最先进的视觉聚类技术是否能够自动恢复植物学家自己建立的形态分类。聚类阶段基于最近的共享近邻(SNN)聚类算法,该算法允许在类别级别有效地组合异构视觉信息源。每个结果聚类都与视觉相似性的最佳选择相关联,即使我们使用一组盲的视觉来源作为输入,也可以发现多样化和有意义的形态类别。实验在ImageCLEF 2011植物识别数据集上进行,该数据集特别丰富了形态学属性标签(由植物学家专家注释)。结果非常有希望,因为所有自动发现的簇都可以很容易地与植物学家构建的形态树的一个节点相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plant leaves morphological categorization with shared nearest neighbours clustering
This paper presents an original experiment aimed at evaluating if state-of-the-art visual clustering techniques are able to automatically recover morphological classifications built by the botanists themselves. The clustering phase is based on a recent Shared-Nearest Neighbours (SNN) clustering algorithm, which allows to combine effectively heterogeneous visual information sources at the category level. Each resulting cluster is associated with an optimal selection of visual similarities, allowing to discover diverse and meaningful morphological categories even if we use a blind set of visual sources as input. Experiments are performed on ImageCLEF 2011 plant identification dataset, that was specifically enriched in this work with morphological attributes tags (annotated by expert botanists). The results are very promising, since all clusters discovered automatically can be easily matched to one node of the morphological tree built by the botanists.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信