基于神经网络的三相异步电动机轴承故障检测方法

W. S. Gongora, H. V. D. Silva, A. Goedtel, W. Godoy, S. D. Silva
{"title":"基于神经网络的三相异步电动机轴承故障检测方法","authors":"W. S. Gongora, H. V. D. Silva, A. Goedtel, W. Godoy, S. D. Silva","doi":"10.1109/DEMPED.2013.6645771","DOIUrl":null,"url":null,"abstract":"The induction motor has been widely used in various industrial applications. Thus, several studies have presented strategies for the diagnosis and prediction of failures in these motor. One strategy used recently is based on intelligent systems, in particular, artificial neural networks. The purpose of this paper is to present an alternative tool to traditional methods for detection of bearing failures using on a perceptron network with signal analysis in time domain. Experimental results are presented to validate the proposal.","PeriodicalId":425644,"journal":{"name":"2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Neural approach for bearing fault detection in three phase induction motors\",\"authors\":\"W. S. Gongora, H. V. D. Silva, A. Goedtel, W. Godoy, S. D. Silva\",\"doi\":\"10.1109/DEMPED.2013.6645771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The induction motor has been widely used in various industrial applications. Thus, several studies have presented strategies for the diagnosis and prediction of failures in these motor. One strategy used recently is based on intelligent systems, in particular, artificial neural networks. The purpose of this paper is to present an alternative tool to traditional methods for detection of bearing failures using on a perceptron network with signal analysis in time domain. Experimental results are presented to validate the proposal.\",\"PeriodicalId\":425644,\"journal\":{\"name\":\"2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEMPED.2013.6645771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2013.6645771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

感应电动机已广泛应用于各种工业应用中。因此,一些研究提出了诊断和预测这些电机故障的策略。最近使用的一种策略是基于智能系统,特别是人工神经网络。本文的目的是提出一种替代传统方法的工具,用于在时域信号分析的感知器网络上检测轴承故障。实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural approach for bearing fault detection in three phase induction motors
The induction motor has been widely used in various industrial applications. Thus, several studies have presented strategies for the diagnosis and prediction of failures in these motor. One strategy used recently is based on intelligent systems, in particular, artificial neural networks. The purpose of this paper is to present an alternative tool to traditional methods for detection of bearing failures using on a perceptron network with signal analysis in time domain. Experimental results are presented to validate the proposal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信