Web预取的富语义马尔可夫模型

Nizar R. Mabroukeh, C. Ezeife
{"title":"Web预取的富语义马尔可夫模型","authors":"Nizar R. Mabroukeh, C. Ezeife","doi":"10.1109/ICDMW.2009.18","DOIUrl":null,"url":null,"abstract":"Domain knowledge for web applications is currently being made available as domain ontology with the advent of the semantic web, in which semantics govern relationships among objects of interest (e. g., commercial items to be purchased in an e-Commerce web site). Our earlier work proposed to integrate semantic information into all phases of the web usage mining process, for an intelligent semantics-aware web usage mining framework. There are ways to integrate semantic information into Markov models used in the third phase for next page request prediction. Semantic information is combined with the transition probability matrix of a Markov model. This way, it provides a low order Markov model with intelligent accurate predictions and less complexity than higher order models, also solving the problem of contradicting prediction. This paper proposes to use semantic information to prune states in Selective Markov models SMM, semantic information can lead to context-aware higher order Markov models with about 16% less space complexity.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Semantic-Rich Markov Models for Web Prefetching\",\"authors\":\"Nizar R. Mabroukeh, C. Ezeife\",\"doi\":\"10.1109/ICDMW.2009.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Domain knowledge for web applications is currently being made available as domain ontology with the advent of the semantic web, in which semantics govern relationships among objects of interest (e. g., commercial items to be purchased in an e-Commerce web site). Our earlier work proposed to integrate semantic information into all phases of the web usage mining process, for an intelligent semantics-aware web usage mining framework. There are ways to integrate semantic information into Markov models used in the third phase for next page request prediction. Semantic information is combined with the transition probability matrix of a Markov model. This way, it provides a low order Markov model with intelligent accurate predictions and less complexity than higher order models, also solving the problem of contradicting prediction. This paper proposes to use semantic information to prune states in Selective Markov models SMM, semantic information can lead to context-aware higher order Markov models with about 16% less space complexity.\",\"PeriodicalId\":351078,\"journal\":{\"name\":\"2009 IEEE International Conference on Data Mining Workshops\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2009.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

随着语义网的出现,web应用程序的领域知识目前以领域本体的形式出现,在语义网中,语义控制感兴趣的对象之间的关系(例如,要在电子商务网站上购买的商业项目)。我们早期的工作建议将语义信息集成到web使用挖掘过程的各个阶段,以构建一个智能的语义感知web使用挖掘框架。有一些方法可以将语义信息集成到第三阶段用于预测下一页请求的马尔可夫模型中。语义信息与马尔可夫模型的转移概率矩阵相结合。这样,它提供了一个低阶马尔可夫模型,具有智能准确的预测,比高阶模型更低的复杂性,也解决了预测矛盾的问题。本文提出使用语义信息对选择性马尔可夫模型(SMM)中的状态进行剪枝,语义信息可以产生上下文感知的高阶马尔可夫模型,其空间复杂度降低约16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic-Rich Markov Models for Web Prefetching
Domain knowledge for web applications is currently being made available as domain ontology with the advent of the semantic web, in which semantics govern relationships among objects of interest (e. g., commercial items to be purchased in an e-Commerce web site). Our earlier work proposed to integrate semantic information into all phases of the web usage mining process, for an intelligent semantics-aware web usage mining framework. There are ways to integrate semantic information into Markov models used in the third phase for next page request prediction. Semantic information is combined with the transition probability matrix of a Markov model. This way, it provides a low order Markov model with intelligent accurate predictions and less complexity than higher order models, also solving the problem of contradicting prediction. This paper proposes to use semantic information to prune states in Selective Markov models SMM, semantic information can lead to context-aware higher order Markov models with about 16% less space complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信