{"title":"自动化软件测试技术的有效性(主题演讲)","authors":"A. Aleti","doi":"10.1145/3412452.3428120","DOIUrl":null,"url":null,"abstract":"With the rise of AI-based systems, such as self-driving cars, Google search, and automated decision-making systems, new challenges have emerged for the testing community. Verifying such software systems is becoming an extremely difficult and expensive task, often constituting up to 90% of the software expenses. Software in a self-driving car, for example, must safely operate in an infinite number of scenarios, which makes it extremely hard to find bugs in such systems. In this talk, I will explore some of these challenges, and introduce our work which aims at improving the bug-detection capabilities of automated software testing. First, I will talk about a framework that maps the effectiveness of automated software testing techniques, by identifying software features that impact the ability of these techniques to achieve high code coverage. Next, I will introduce our latest work that incorporates defect prediction information to improve the efficiency of search-based software testing to detect software bugs.","PeriodicalId":163705,"journal":{"name":"Proceedings of the 11th ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection, and Evaluation","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effectiveness of automated software testing techniques (keynote)\",\"authors\":\"A. Aleti\",\"doi\":\"10.1145/3412452.3428120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rise of AI-based systems, such as self-driving cars, Google search, and automated decision-making systems, new challenges have emerged for the testing community. Verifying such software systems is becoming an extremely difficult and expensive task, often constituting up to 90% of the software expenses. Software in a self-driving car, for example, must safely operate in an infinite number of scenarios, which makes it extremely hard to find bugs in such systems. In this talk, I will explore some of these challenges, and introduce our work which aims at improving the bug-detection capabilities of automated software testing. First, I will talk about a framework that maps the effectiveness of automated software testing techniques, by identifying software features that impact the ability of these techniques to achieve high code coverage. Next, I will introduce our latest work that incorporates defect prediction information to improve the efficiency of search-based software testing to detect software bugs.\",\"PeriodicalId\":163705,\"journal\":{\"name\":\"Proceedings of the 11th ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection, and Evaluation\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection, and Evaluation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3412452.3428120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection, and Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3412452.3428120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The effectiveness of automated software testing techniques (keynote)
With the rise of AI-based systems, such as self-driving cars, Google search, and automated decision-making systems, new challenges have emerged for the testing community. Verifying such software systems is becoming an extremely difficult and expensive task, often constituting up to 90% of the software expenses. Software in a self-driving car, for example, must safely operate in an infinite number of scenarios, which makes it extremely hard to find bugs in such systems. In this talk, I will explore some of these challenges, and introduce our work which aims at improving the bug-detection capabilities of automated software testing. First, I will talk about a framework that maps the effectiveness of automated software testing techniques, by identifying software features that impact the ability of these techniques to achieve high code coverage. Next, I will introduce our latest work that incorporates defect prediction information to improve the efficiency of search-based software testing to detect software bugs.