上肢肘关节康复变刚度执行器的混合运动刚度控制

Ziyi Yang, Shuxiang Guo
{"title":"上肢肘关节康复变刚度执行器的混合运动刚度控制","authors":"Ziyi Yang, Shuxiang Guo","doi":"10.1109/ICMA54519.2022.9855934","DOIUrl":null,"url":null,"abstract":"The variable stiffness actuator (VSA) can be integrated into the robotics to improve the inherent compliance characteristics of robotics for the safe physical human robot interaction (pHRI). The output stiffness of the VSA is excepted to be independently controllable during the rehabilitation training processing. Furthermore, the motion and stiffness control of VSA can be independently controlled by VSA for rehabilitation application scenario. In this paper, a hybrid motion stiffness control strategy for achieving assist-as-needed control and suitable patient-robot interaction was proposed utilizing the compliance characteristic of VSA. The elbow joint output stiffness could be adjusted by a linear mapping method to obtain controllable assistant level, which is based on the real-time bilateral position tracking error. It is noted that the linear mapping scaler could be regulated for different patient injury-levels. The preliminary experimental results show that the proposed method can adjust the elbow joint stiffness for patients according to the real-time bilateral position errors.","PeriodicalId":120073,"journal":{"name":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Hybrid Motion Stiffness Control of Variable Stiffness Actuator for Upper Limb Elbow Joints Rehabilitation\",\"authors\":\"Ziyi Yang, Shuxiang Guo\",\"doi\":\"10.1109/ICMA54519.2022.9855934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The variable stiffness actuator (VSA) can be integrated into the robotics to improve the inherent compliance characteristics of robotics for the safe physical human robot interaction (pHRI). The output stiffness of the VSA is excepted to be independently controllable during the rehabilitation training processing. Furthermore, the motion and stiffness control of VSA can be independently controlled by VSA for rehabilitation application scenario. In this paper, a hybrid motion stiffness control strategy for achieving assist-as-needed control and suitable patient-robot interaction was proposed utilizing the compliance characteristic of VSA. The elbow joint output stiffness could be adjusted by a linear mapping method to obtain controllable assistant level, which is based on the real-time bilateral position tracking error. It is noted that the linear mapping scaler could be regulated for different patient injury-levels. The preliminary experimental results show that the proposed method can adjust the elbow joint stiffness for patients according to the real-time bilateral position errors.\",\"PeriodicalId\":120073,\"journal\":{\"name\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA54519.2022.9855934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA54519.2022.9855934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

将变刚度作动器(VSA)集成到机器人中,可以提高机器人的内在顺应性,实现安全的人机物理交互(pHRI)。在康复训练过程中,VSA的输出刚度是独立可控的。此外,在康复应用场景中,VSA的运动和刚度控制可以由VSA独立控制。本文利用VSA的柔度特性,提出了一种混合运动刚度控制策略,以实现按需辅助控制和患者与机器人的适当交互。基于实时双侧位置跟踪误差,采用线性映射法调节肘关节输出刚度,获得可控的辅助水平。注意到线性映射标度可以根据不同的患者损伤程度进行调节。初步实验结果表明,该方法可以根据患者的实时双侧位置误差来调整患者的肘关节刚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Motion Stiffness Control of Variable Stiffness Actuator for Upper Limb Elbow Joints Rehabilitation
The variable stiffness actuator (VSA) can be integrated into the robotics to improve the inherent compliance characteristics of robotics for the safe physical human robot interaction (pHRI). The output stiffness of the VSA is excepted to be independently controllable during the rehabilitation training processing. Furthermore, the motion and stiffness control of VSA can be independently controlled by VSA for rehabilitation application scenario. In this paper, a hybrid motion stiffness control strategy for achieving assist-as-needed control and suitable patient-robot interaction was proposed utilizing the compliance characteristic of VSA. The elbow joint output stiffness could be adjusted by a linear mapping method to obtain controllable assistant level, which is based on the real-time bilateral position tracking error. It is noted that the linear mapping scaler could be regulated for different patient injury-levels. The preliminary experimental results show that the proposed method can adjust the elbow joint stiffness for patients according to the real-time bilateral position errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信