基于最小内距离聚类的疾病监测

Junjie Cao, K. B. P. Kris Baoqian Pan, K. Tsui, S. Wong
{"title":"基于最小内距离聚类的疾病监测","authors":"Junjie Cao, K. B. P. Kris Baoqian Pan, K. Tsui, S. Wong","doi":"10.1109/PHM.2012.6228842","DOIUrl":null,"url":null,"abstract":"Disease surveillance is essential for studying disease spread. An important task in disease surveillance is identifying disease clusters, which are areas of unusually high incidence. In this paper, we formulate the disease surveillance problem as a clustering problem and review some standard techniques used for clustering problems. Inspired by techniques used in graph theory, we introduce our new method, which is based on a new statistic derived from minimal internal distance in the graph, to solve this problem. Simulated and real lung cancer data from New Mexico are analyzed according to our method, and results are compared with those of the popular spatial scan statistic.","PeriodicalId":444815,"journal":{"name":"Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disease surveillance by clustering based on minimal internal distance\",\"authors\":\"Junjie Cao, K. B. P. Kris Baoqian Pan, K. Tsui, S. Wong\",\"doi\":\"10.1109/PHM.2012.6228842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Disease surveillance is essential for studying disease spread. An important task in disease surveillance is identifying disease clusters, which are areas of unusually high incidence. In this paper, we formulate the disease surveillance problem as a clustering problem and review some standard techniques used for clustering problems. Inspired by techniques used in graph theory, we introduce our new method, which is based on a new statistic derived from minimal internal distance in the graph, to solve this problem. Simulated and real lung cancer data from New Mexico are analyzed according to our method, and results are compared with those of the popular spatial scan statistic.\",\"PeriodicalId\":444815,\"journal\":{\"name\":\"Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PHM.2012.6228842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM.2012.6228842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

疾病监测对研究疾病传播至关重要。疾病监测的一项重要任务是确定疾病聚集性,即发病率异常高的地区。本文将疾病监测问题表述为一个聚类问题,并回顾了用于聚类问题的一些标准技术。受图论中使用的技术的启发,我们提出了一种新的方法来解决这个问题,该方法是基于图的最小内距离导出的一个新的统计量。根据该方法对新墨西哥州的模拟肺癌数据和真实肺癌数据进行了分析,并与常用的空间扫描统计结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disease surveillance by clustering based on minimal internal distance
Disease surveillance is essential for studying disease spread. An important task in disease surveillance is identifying disease clusters, which are areas of unusually high incidence. In this paper, we formulate the disease surveillance problem as a clustering problem and review some standard techniques used for clustering problems. Inspired by techniques used in graph theory, we introduce our new method, which is based on a new statistic derived from minimal internal distance in the graph, to solve this problem. Simulated and real lung cancer data from New Mexico are analyzed according to our method, and results are compared with those of the popular spatial scan statistic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信