性别调整:增强微调去偏见预训练语言模型

Somayeh Ghanbarzadeh, Yan Huang, H. Palangi, R. C. Moreno, Hamed Khanpour
{"title":"性别调整:增强微调去偏见预训练语言模型","authors":"Somayeh Ghanbarzadeh, Yan Huang, H. Palangi, R. C. Moreno, Hamed Khanpour","doi":"10.48550/arXiv.2307.10522","DOIUrl":null,"url":null,"abstract":"Recent studies have revealed that the widely-used Pre-trained Language Models (PLMs) propagate societal biases from the large unmoderated pre-training corpora. Existing solutions require debiasing training processes and datasets for debiasing, which are resource-intensive and costly. Furthermore, these methods hurt the PLMs' performance on downstream tasks. In this study, we propose Gender-tuning, which debiases the PLMs through fine-tuning on downstream tasks' datasets. For this aim, Gender-tuning integrates Masked Language Modeling (MLM) training objectives into fine-tuning's training process. Comprehensive experiments show that Gender-tuning outperforms the state-of-the-art baselines in terms of average gender bias scores in PLMs while improving PLMs' performance on downstream tasks solely using the downstream tasks' dataset. Also, Gender-tuning is a deployable debiasing tool for any PLM that works with original fine-tuning.","PeriodicalId":352845,"journal":{"name":"Annual Meeting of the Association for Computational Linguistics","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gender-tuning: Empowering Fine-tuning for Debiasing Pre-trained Language Models\",\"authors\":\"Somayeh Ghanbarzadeh, Yan Huang, H. Palangi, R. C. Moreno, Hamed Khanpour\",\"doi\":\"10.48550/arXiv.2307.10522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies have revealed that the widely-used Pre-trained Language Models (PLMs) propagate societal biases from the large unmoderated pre-training corpora. Existing solutions require debiasing training processes and datasets for debiasing, which are resource-intensive and costly. Furthermore, these methods hurt the PLMs' performance on downstream tasks. In this study, we propose Gender-tuning, which debiases the PLMs through fine-tuning on downstream tasks' datasets. For this aim, Gender-tuning integrates Masked Language Modeling (MLM) training objectives into fine-tuning's training process. Comprehensive experiments show that Gender-tuning outperforms the state-of-the-art baselines in terms of average gender bias scores in PLMs while improving PLMs' performance on downstream tasks solely using the downstream tasks' dataset. Also, Gender-tuning is a deployable debiasing tool for any PLM that works with original fine-tuning.\",\"PeriodicalId\":352845,\"journal\":{\"name\":\"Annual Meeting of the Association for Computational Linguistics\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Meeting of the Association for Computational Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2307.10522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Meeting of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.10522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近的研究表明,广泛使用的预训练语言模型(PLMs)从大量未经调节的预训练语料库中传播社会偏见。现有的解决方案需要除偏训练过程和除偏数据集,这是资源密集型和昂贵的。此外,这些方法损害了plm在下游任务上的性能。在本研究中,我们提出性别调整,通过对下游任务数据集的微调来消除plm的偏差。为此,性别调优将掩码语言建模(MLM)的训练目标集成到调优的训练过程中。综合实验表明,性别调整在plm的平均性别偏见得分方面优于最先进的基线,同时仅使用下游任务的数据集提高了plm在下游任务上的表现。此外,性别调优对于任何使用原始微调的PLM来说都是一个可部署的消除偏见的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gender-tuning: Empowering Fine-tuning for Debiasing Pre-trained Language Models
Recent studies have revealed that the widely-used Pre-trained Language Models (PLMs) propagate societal biases from the large unmoderated pre-training corpora. Existing solutions require debiasing training processes and datasets for debiasing, which are resource-intensive and costly. Furthermore, these methods hurt the PLMs' performance on downstream tasks. In this study, we propose Gender-tuning, which debiases the PLMs through fine-tuning on downstream tasks' datasets. For this aim, Gender-tuning integrates Masked Language Modeling (MLM) training objectives into fine-tuning's training process. Comprehensive experiments show that Gender-tuning outperforms the state-of-the-art baselines in terms of average gender bias scores in PLMs while improving PLMs' performance on downstream tasks solely using the downstream tasks' dataset. Also, Gender-tuning is a deployable debiasing tool for any PLM that works with original fine-tuning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信