KeyRAM:一个0.34 uJ/decision 18k decisions/s的循环注意内存处理器,用于关键字识别

Hassan Dbouk, Sujan Kumar Gonugondla, Charbel Sakr, Naresh R Shanbhag
{"title":"KeyRAM:一个0.34 uJ/decision 18k decisions/s的循环注意内存处理器,用于关键字识别","authors":"Hassan Dbouk, Sujan Kumar Gonugondla, Charbel Sakr, Naresh R Shanbhag","doi":"10.1109/CICC48029.2020.9075923","DOIUrl":null,"url":null,"abstract":"This paper presents a 0.34 uJ/decision deep learning-based classifier for keyword spotting (KWS) in 65 nm CMOS with all weights stored on-chip. This work adapts a Recurrent Attention Model (RAM) algorithm for the KWS task, and employs an in-memory computing (IMC) architecture to achieve up to 9× savings in energy/decision and more than 23× savings in EDP of decisions over a state-of-the art IMC IC for KWS using the Google Speech dataset while achieving the highest reported decision throughput of 18.32 k decisions/s.","PeriodicalId":409525,"journal":{"name":"2020 IEEE Custom Integrated Circuits Conference (CICC)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"KeyRAM: A 0.34 uJ/decision 18 k decisions/s Recurrent Attention In-memory Processor for Keyword Spotting\",\"authors\":\"Hassan Dbouk, Sujan Kumar Gonugondla, Charbel Sakr, Naresh R Shanbhag\",\"doi\":\"10.1109/CICC48029.2020.9075923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a 0.34 uJ/decision deep learning-based classifier for keyword spotting (KWS) in 65 nm CMOS with all weights stored on-chip. This work adapts a Recurrent Attention Model (RAM) algorithm for the KWS task, and employs an in-memory computing (IMC) architecture to achieve up to 9× savings in energy/decision and more than 23× savings in EDP of decisions over a state-of-the art IMC IC for KWS using the Google Speech dataset while achieving the highest reported decision throughput of 18.32 k decisions/s.\",\"PeriodicalId\":409525,\"journal\":{\"name\":\"2020 IEEE Custom Integrated Circuits Conference (CICC)\",\"volume\":\"137 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Custom Integrated Circuits Conference (CICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICC48029.2020.9075923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC48029.2020.9075923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种基于0.34 uJ/decision深度学习的65纳米CMOS关键字定位(KWS)分类器,该分类器的所有权值都存储在片上。这项工作为KWS任务采用了循环注意模型(RAM)算法,并采用内存计算(IMC)架构,在使用谷歌语音数据集的KWS最先进的IMC IC上实现了高达9倍的能量/决策节约和超过23倍的决策EDP节约,同时实现了最高的决策吞吐量18.32 k决策/s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KeyRAM: A 0.34 uJ/decision 18 k decisions/s Recurrent Attention In-memory Processor for Keyword Spotting
This paper presents a 0.34 uJ/decision deep learning-based classifier for keyword spotting (KWS) in 65 nm CMOS with all weights stored on-chip. This work adapts a Recurrent Attention Model (RAM) algorithm for the KWS task, and employs an in-memory computing (IMC) architecture to achieve up to 9× savings in energy/decision and more than 23× savings in EDP of decisions over a state-of-the art IMC IC for KWS using the Google Speech dataset while achieving the highest reported decision throughput of 18.32 k decisions/s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信