医学分类的进化多目标优化

A. Hamdi-Cherif, Chafia Kara-Mohammed
{"title":"医学分类的进化多目标优化","authors":"A. Hamdi-Cherif, Chafia Kara-Mohammed","doi":"10.1109/IEEEGCC.2011.5752566","DOIUrl":null,"url":null,"abstract":"We propose a computational environment based on evolutionary algorithm for medical classification. We use evolutionary multiobjective optimization (EMO) to solve a general medical minimization problem. As an example, we simultaneously minimize three objectives, namely the number of genes responsible for cancer classification while reducing the number of misclassifications in both testing and learning data sets for real patients. Results quality is reported against three genetic operators namely selection, crossover and mutation, each of which offering three different methods. Our implementation gives comparable results to more sophisticated methods, such as NGSAII-like ones, with far less computational efforts.","PeriodicalId":119104,"journal":{"name":"2011 IEEE GCC Conference and Exhibition (GCC)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evolutionary multiobjective optimization for medical classification\",\"authors\":\"A. Hamdi-Cherif, Chafia Kara-Mohammed\",\"doi\":\"10.1109/IEEEGCC.2011.5752566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a computational environment based on evolutionary algorithm for medical classification. We use evolutionary multiobjective optimization (EMO) to solve a general medical minimization problem. As an example, we simultaneously minimize three objectives, namely the number of genes responsible for cancer classification while reducing the number of misclassifications in both testing and learning data sets for real patients. Results quality is reported against three genetic operators namely selection, crossover and mutation, each of which offering three different methods. Our implementation gives comparable results to more sophisticated methods, such as NGSAII-like ones, with far less computational efforts.\",\"PeriodicalId\":119104,\"journal\":{\"name\":\"2011 IEEE GCC Conference and Exhibition (GCC)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE GCC Conference and Exhibition (GCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEEGCC.2011.5752566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE GCC Conference and Exhibition (GCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEEGCC.2011.5752566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于进化算法的医学分类计算环境。我们使用进化多目标优化(EMO)来解决一般的医疗最小化问题。例如,我们同时最小化了三个目标,即负责癌症分类的基因数量,同时减少了真实患者的测试和学习数据集中的错误分类数量。结果质量报告针对三种遗传操作,即选择,交叉和突变,每个提供三种不同的方法。我们的实现提供了与更复杂的方法(例如类似ngsai的方法)相当的结果,而计算工作量要少得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary multiobjective optimization for medical classification
We propose a computational environment based on evolutionary algorithm for medical classification. We use evolutionary multiobjective optimization (EMO) to solve a general medical minimization problem. As an example, we simultaneously minimize three objectives, namely the number of genes responsible for cancer classification while reducing the number of misclassifications in both testing and learning data sets for real patients. Results quality is reported against three genetic operators namely selection, crossover and mutation, each of which offering three different methods. Our implementation gives comparable results to more sophisticated methods, such as NGSAII-like ones, with far less computational efforts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信