比较物种分布建模方法的只存在和不存在数据

J. Elith, C. Graham, Roozbeh Valavi, M. Abegg, C. Bruce, Simon Ferrier, A. Ford, A. Guisan, R. Hijmans, F. Huettmann, L. Lohmann, Bette A. Loiselle, C. Moritz, J. Overton, A. Peterson, Steven J. Phillips, K. Richardson, S. Williams, S. Wiser, T. Wohlgemuth, N. Zimmermann
{"title":"比较物种分布建模方法的只存在和不存在数据","authors":"J. Elith, C. Graham, Roozbeh Valavi, M. Abegg, C. Bruce, Simon Ferrier, A. Ford, A. Guisan, R. Hijmans, F. Huettmann, L. Lohmann, Bette A. Loiselle, C. Moritz, J. Overton, A. Peterson, Steven J. Phillips, K. Richardson, S. Williams, S. Wiser, T. Wohlgemuth, N. Zimmermann","doi":"10.17161/bi.v15i2.13384","DOIUrl":null,"url":null,"abstract":"Species distribution models (SDMs) are widely used to predict and study distributions of species. Many different modeling methods and associated algorithms are used and continue to emerge. It is important to understand how different approaches perform, particularly when applied to species occurrence records that were not gathered in struc­tured surveys (e.g. opportunistic records). This need motivated a large-scale, collaborative effort, published in 2006, that aimed to create objective comparisons of algorithm performance. As a benchmark, and to facilitate future comparisons of approaches, here we publish that dataset: point location records for 226 anonymized species from six regions of the world, with accompanying predictor variables in raster (grid) and point formats. A particularly interesting characteristic of this dataset is that independent presence-absence survey data are available for evaluation alongside the presence-only species occurrence data intended for modeling. The dataset is available on Open Science Framework and as an R package and can be used as a benchmark for modeling approaches and for testing new ways to evaluate the accuracy of SDMs.","PeriodicalId":269455,"journal":{"name":"Biodiversity Informatics","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Presence-only and Presence-absence Data for Comparing Species Distribution Modeling Methods\",\"authors\":\"J. Elith, C. Graham, Roozbeh Valavi, M. Abegg, C. Bruce, Simon Ferrier, A. Ford, A. Guisan, R. Hijmans, F. Huettmann, L. Lohmann, Bette A. Loiselle, C. Moritz, J. Overton, A. Peterson, Steven J. Phillips, K. Richardson, S. Williams, S. Wiser, T. Wohlgemuth, N. Zimmermann\",\"doi\":\"10.17161/bi.v15i2.13384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Species distribution models (SDMs) are widely used to predict and study distributions of species. Many different modeling methods and associated algorithms are used and continue to emerge. It is important to understand how different approaches perform, particularly when applied to species occurrence records that were not gathered in struc­tured surveys (e.g. opportunistic records). This need motivated a large-scale, collaborative effort, published in 2006, that aimed to create objective comparisons of algorithm performance. As a benchmark, and to facilitate future comparisons of approaches, here we publish that dataset: point location records for 226 anonymized species from six regions of the world, with accompanying predictor variables in raster (grid) and point formats. A particularly interesting characteristic of this dataset is that independent presence-absence survey data are available for evaluation alongside the presence-only species occurrence data intended for modeling. The dataset is available on Open Science Framework and as an R package and can be used as a benchmark for modeling approaches and for testing new ways to evaluate the accuracy of SDMs.\",\"PeriodicalId\":269455,\"journal\":{\"name\":\"Biodiversity Informatics\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodiversity Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17161/bi.v15i2.13384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodiversity Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17161/bi.v15i2.13384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

物种分布模型(SDMs)被广泛用于预测和研究物种的分布。许多不同的建模方法和相关算法被使用并不断出现。重要的是要了解不同的方法如何执行,特别是当应用于非结构化调查中收集的物种发生记录(例如机会记录)时。这种需求激发了2006年发表的一项大规模的合作努力,旨在对算法性能进行客观比较。作为基准,为了便于将来的方法比较,我们在这里发布了该数据集:来自世界六个地区的226个匿名物种的点位置记录,并附带光栅(网格)和点格式的预测变量。该数据集的一个特别有趣的特征是,除了用于建模的仅存在的物种发生数据外,还可以使用独立的存在-缺失调查数据进行评估。该数据集可在Open Science Framework上获得,并作为R包使用,可作为建模方法的基准,并用于测试评估sdm准确性的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Presence-only and Presence-absence Data for Comparing Species Distribution Modeling Methods
Species distribution models (SDMs) are widely used to predict and study distributions of species. Many different modeling methods and associated algorithms are used and continue to emerge. It is important to understand how different approaches perform, particularly when applied to species occurrence records that were not gathered in struc­tured surveys (e.g. opportunistic records). This need motivated a large-scale, collaborative effort, published in 2006, that aimed to create objective comparisons of algorithm performance. As a benchmark, and to facilitate future comparisons of approaches, here we publish that dataset: point location records for 226 anonymized species from six regions of the world, with accompanying predictor variables in raster (grid) and point formats. A particularly interesting characteristic of this dataset is that independent presence-absence survey data are available for evaluation alongside the presence-only species occurrence data intended for modeling. The dataset is available on Open Science Framework and as an R package and can be used as a benchmark for modeling approaches and for testing new ways to evaluate the accuracy of SDMs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信