基于多目标遗传算法的集成分类器系统优化

T. Nguyen, Alan Wee-Chung Liew, Xuan Cuong Pham, Mai Phuong Nguyen
{"title":"基于多目标遗传算法的集成分类器系统优化","authors":"T. Nguyen, Alan Wee-Chung Liew, Xuan Cuong Pham, Mai Phuong Nguyen","doi":"10.1109/ICMLC.2014.7009090","DOIUrl":null,"url":null,"abstract":"This paper introduces a mechanism to learn optimal classifier combining algorithms for an ensemble system. By using a genetic algorithm approach that focuses on 3 objectives namely the number of correct classified observations, the number of selected features and the number of selected classifiers, optimal solution can be achieved after several interactions of crossover and mutation. We also employ the Ordered Weighted Averaging operator in which a weight vector is built by a Linear Decreasing (LD) function to find average values of outputs from combining algorithms. Experiments on 2 well-known UCI Machine Learning Repository datasets demonstrate benefits of our approach compared with other state-of-the-art ensemble methods like Decision Template, SCANN and all fixed combining algorithms in the ensemble system.","PeriodicalId":335296,"journal":{"name":"2014 International Conference on Machine Learning and Cybernetics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Optimization of ensemble classifier system based on multiple objectives genetic algorithm\",\"authors\":\"T. Nguyen, Alan Wee-Chung Liew, Xuan Cuong Pham, Mai Phuong Nguyen\",\"doi\":\"10.1109/ICMLC.2014.7009090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a mechanism to learn optimal classifier combining algorithms for an ensemble system. By using a genetic algorithm approach that focuses on 3 objectives namely the number of correct classified observations, the number of selected features and the number of selected classifiers, optimal solution can be achieved after several interactions of crossover and mutation. We also employ the Ordered Weighted Averaging operator in which a weight vector is built by a Linear Decreasing (LD) function to find average values of outputs from combining algorithms. Experiments on 2 well-known UCI Machine Learning Repository datasets demonstrate benefits of our approach compared with other state-of-the-art ensemble methods like Decision Template, SCANN and all fixed combining algorithms in the ensemble system.\",\"PeriodicalId\":335296,\"journal\":{\"name\":\"2014 International Conference on Machine Learning and Cybernetics\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2014.7009090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2014.7009090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文介绍了一种学习集成系统中最优分类器组合算法的机制。采用以正确分类观测数、选择特征数和选择分类器数为目标的遗传算法方法,经过多次交叉和变异的相互作用,可以得到最优解。我们还使用有序加权平均算子,其中权重向量由线性递减(LD)函数构建,以找到组合算法输出的平均值。在两个著名的UCI机器学习存储库数据集上的实验表明,与其他最先进的集成方法(如Decision Template, SCANN和集成系统中的所有固定组合算法)相比,我们的方法具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of ensemble classifier system based on multiple objectives genetic algorithm
This paper introduces a mechanism to learn optimal classifier combining algorithms for an ensemble system. By using a genetic algorithm approach that focuses on 3 objectives namely the number of correct classified observations, the number of selected features and the number of selected classifiers, optimal solution can be achieved after several interactions of crossover and mutation. We also employ the Ordered Weighted Averaging operator in which a weight vector is built by a Linear Decreasing (LD) function to find average values of outputs from combining algorithms. Experiments on 2 well-known UCI Machine Learning Repository datasets demonstrate benefits of our approach compared with other state-of-the-art ensemble methods like Decision Template, SCANN and all fixed combining algorithms in the ensemble system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信