使用窗口文字覆盖多值逻辑函数所需的最大隐含数

G. Dueck, G. H. Rees
{"title":"使用窗口文字覆盖多值逻辑函数所需的最大隐含数","authors":"G. Dueck, G. H. Rees","doi":"10.1109/ISMVL.1991.130743","DOIUrl":null,"url":null,"abstract":"Some bounds on the maximum number of implicants needed in a minimal sum of products expression using window literals and the truncated sum, operation are investigated. Functions with one input variable require at most r implicants in their minimum sum of products expression, where r is the radix of the function. Two variable functions with radix less than eight are analyzed. No firm bounds could be established for two variable functions with radix greater than four.<<ETX>>","PeriodicalId":127974,"journal":{"name":"[1991] Proceedings of the Twenty-First International Symposium on Multiple-Valued Logic","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"On the maximum number of implicants needed to cover a multiple-valued logic function using window literals\",\"authors\":\"G. Dueck, G. H. Rees\",\"doi\":\"10.1109/ISMVL.1991.130743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some bounds on the maximum number of implicants needed in a minimal sum of products expression using window literals and the truncated sum, operation are investigated. Functions with one input variable require at most r implicants in their minimum sum of products expression, where r is the radix of the function. Two variable functions with radix less than eight are analyzed. No firm bounds could be established for two variable functions with radix greater than four.<<ETX>>\",\"PeriodicalId\":127974,\"journal\":{\"name\":\"[1991] Proceedings of the Twenty-First International Symposium on Multiple-Valued Logic\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings of the Twenty-First International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.1991.130743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the Twenty-First International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1991.130743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

研究了用窗口文字和截断和运算的最小乘积和表达式所需的最大蕴涵数的界限。具有一个输入变量的函数在其最小积和表达式中最多需要r个隐含项,其中r是函数的基数。分析了基数小于8的两个变量函数。对于基数大于4的两个变量函数,不能建立确定的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the maximum number of implicants needed to cover a multiple-valued logic function using window literals
Some bounds on the maximum number of implicants needed in a minimal sum of products expression using window literals and the truncated sum, operation are investigated. Functions with one input variable require at most r implicants in their minimum sum of products expression, where r is the radix of the function. Two variable functions with radix less than eight are analyzed. No firm bounds could be established for two variable functions with radix greater than four.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信