三维距离数据动态背景下的运动目标检测

Yi Yang, Yan Guang, Hao Zhu, M. Fu, Meiling Wang
{"title":"三维距离数据动态背景下的运动目标检测","authors":"Yi Yang, Yan Guang, Hao Zhu, M. Fu, Meiling Wang","doi":"10.1109/IVS.2014.6856426","DOIUrl":null,"url":null,"abstract":"We proposed an unsupervised algorithm to extract profile features and detect moving object under dynamic background in 3D range Data. Moving object detection under dynamic background has become an increasingly popular research topic in mobile robotics. For the characteristics of dynamic background scene, we proposed an online unsupervised moving object detection algorithm, based on Gaussian Mixture Models and Motion Compensation. Furthermore, we did the work of clustering and identifying of the targets. In order to improve the robustness of the algorithm, we used a tracker to track the results of the detection. At last, experimental results on real laser data depicting urban and rural scenes under static and dynamic background are presented.","PeriodicalId":254500,"journal":{"name":"2014 IEEE Intelligent Vehicles Symposium Proceedings","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Moving object detection under dynamic background in 3D range data\",\"authors\":\"Yi Yang, Yan Guang, Hao Zhu, M. Fu, Meiling Wang\",\"doi\":\"10.1109/IVS.2014.6856426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We proposed an unsupervised algorithm to extract profile features and detect moving object under dynamic background in 3D range Data. Moving object detection under dynamic background has become an increasingly popular research topic in mobile robotics. For the characteristics of dynamic background scene, we proposed an online unsupervised moving object detection algorithm, based on Gaussian Mixture Models and Motion Compensation. Furthermore, we did the work of clustering and identifying of the targets. In order to improve the robustness of the algorithm, we used a tracker to track the results of the detection. At last, experimental results on real laser data depicting urban and rural scenes under static and dynamic background are presented.\",\"PeriodicalId\":254500,\"journal\":{\"name\":\"2014 IEEE Intelligent Vehicles Symposium Proceedings\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Intelligent Vehicles Symposium Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2014.6856426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Intelligent Vehicles Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2014.6856426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种无监督的动态背景下三维距离数据轮廓特征提取和运动目标检测算法。动态背景下的运动目标检测已成为移动机器人领域一个日益热门的研究课题。针对动态背景场景的特点,提出了一种基于高斯混合模型和运动补偿的在线无监督运动目标检测算法。此外,我们还对目标进行了聚类和识别工作。为了提高算法的鲁棒性,我们使用跟踪器对检测结果进行跟踪。最后,给出了静态和动态背景下描绘城市和乡村场景的真实激光数据的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moving object detection under dynamic background in 3D range data
We proposed an unsupervised algorithm to extract profile features and detect moving object under dynamic background in 3D range Data. Moving object detection under dynamic background has become an increasingly popular research topic in mobile robotics. For the characteristics of dynamic background scene, we proposed an online unsupervised moving object detection algorithm, based on Gaussian Mixture Models and Motion Compensation. Furthermore, we did the work of clustering and identifying of the targets. In order to improve the robustness of the algorithm, we used a tracker to track the results of the detection. At last, experimental results on real laser data depicting urban and rural scenes under static and dynamic background are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信