{"title":"具有对数非线性的p-双调和伪抛物方程","authors":"Sushmitha Jayachandran, G. Soundararajan","doi":"10.17993/3ctic.2022.112.108-122","DOIUrl":null,"url":null,"abstract":"This paper deals with the existence of solutions of a p-biharmonic pseudo parabolic partial differential equation with logarithmic nonlinearity in a bounded domain. We prove the global existence of the weak solutions using the Faedo-Galerkin method and applying the concavity approach, that the solutions blow up at a finite time. Further, we provide a maximal limit for the blow-up time.","PeriodicalId":237333,"journal":{"name":"3C TIC: Cuadernos de desarrollo aplicados a las TIC","volume":"246 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"p-Biharmonic Pseudo-Parabolic Equation with Logarithmic Non linearity\",\"authors\":\"Sushmitha Jayachandran, G. Soundararajan\",\"doi\":\"10.17993/3ctic.2022.112.108-122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the existence of solutions of a p-biharmonic pseudo parabolic partial differential equation with logarithmic nonlinearity in a bounded domain. We prove the global existence of the weak solutions using the Faedo-Galerkin method and applying the concavity approach, that the solutions blow up at a finite time. Further, we provide a maximal limit for the blow-up time.\",\"PeriodicalId\":237333,\"journal\":{\"name\":\"3C TIC: Cuadernos de desarrollo aplicados a las TIC\",\"volume\":\"246 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3C TIC: Cuadernos de desarrollo aplicados a las TIC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17993/3ctic.2022.112.108-122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3C TIC: Cuadernos de desarrollo aplicados a las TIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17993/3ctic.2022.112.108-122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
p-Biharmonic Pseudo-Parabolic Equation with Logarithmic Non linearity
This paper deals with the existence of solutions of a p-biharmonic pseudo parabolic partial differential equation with logarithmic nonlinearity in a bounded domain. We prove the global existence of the weak solutions using the Faedo-Galerkin method and applying the concavity approach, that the solutions blow up at a finite time. Further, we provide a maximal limit for the blow-up time.