{"title":"基于贝叶斯检测准则的攻击风险最小化","authors":"V. H. Standley, Frank G. Nuño, Jacob W. Sharpe","doi":"10.5220/0007656100170026","DOIUrl":null,"url":null,"abstract":"Strategic deterrence operates in and on a vast interstate network of rational actors seeking to minimize risk. Risk can be minimized by employing a likelihood ratio test (LRT) derived from Bayes’ Theorem. The LRT is comprised of prior, detection, and false-alarm probabilities. The power-law, known for its applicability to complex systems, has been used to model the distribution of combat fatalities. However, it cannot be used as a Bayesian prior for war when its area is unbounded. Analytics applied to Correlates of War data reveals that combat fatalities follow a log-gamma or log-normal probability distribution depending on a state’s escalation strategy. Results are used to show that nuclear war level fatalities pose increasing risk despite decreasing probability, that LRT-based decisions can minimize attack risk if an upper limit of impending fatalities is indicated by the detection system and commensurate with nominal false-alarm maximum, and that only successful defensive strategies are stable.","PeriodicalId":414016,"journal":{"name":"International Conference on Complex Information Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Minimization of Attack Risk with Bayesian Detection Criteria\",\"authors\":\"V. H. Standley, Frank G. Nuño, Jacob W. Sharpe\",\"doi\":\"10.5220/0007656100170026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Strategic deterrence operates in and on a vast interstate network of rational actors seeking to minimize risk. Risk can be minimized by employing a likelihood ratio test (LRT) derived from Bayes’ Theorem. The LRT is comprised of prior, detection, and false-alarm probabilities. The power-law, known for its applicability to complex systems, has been used to model the distribution of combat fatalities. However, it cannot be used as a Bayesian prior for war when its area is unbounded. Analytics applied to Correlates of War data reveals that combat fatalities follow a log-gamma or log-normal probability distribution depending on a state’s escalation strategy. Results are used to show that nuclear war level fatalities pose increasing risk despite decreasing probability, that LRT-based decisions can minimize attack risk if an upper limit of impending fatalities is indicated by the detection system and commensurate with nominal false-alarm maximum, and that only successful defensive strategies are stable.\",\"PeriodicalId\":414016,\"journal\":{\"name\":\"International Conference on Complex Information Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Complex Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0007656100170026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Complex Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0007656100170026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Minimization of Attack Risk with Bayesian Detection Criteria
Strategic deterrence operates in and on a vast interstate network of rational actors seeking to minimize risk. Risk can be minimized by employing a likelihood ratio test (LRT) derived from Bayes’ Theorem. The LRT is comprised of prior, detection, and false-alarm probabilities. The power-law, known for its applicability to complex systems, has been used to model the distribution of combat fatalities. However, it cannot be used as a Bayesian prior for war when its area is unbounded. Analytics applied to Correlates of War data reveals that combat fatalities follow a log-gamma or log-normal probability distribution depending on a state’s escalation strategy. Results are used to show that nuclear war level fatalities pose increasing risk despite decreasing probability, that LRT-based decisions can minimize attack risk if an upper limit of impending fatalities is indicated by the detection system and commensurate with nominal false-alarm maximum, and that only successful defensive strategies are stable.