基于遗传算法和支持向量机的城市道路信号事件检测

Mohamed Dardor, Mohammed Chlyah, J. Boumhidi
{"title":"基于遗传算法和支持向量机的城市道路信号事件检测","authors":"Mohamed Dardor, Mohammed Chlyah, J. Boumhidi","doi":"10.1109/ISACV.2018.8354029","DOIUrl":null,"url":null,"abstract":"Detecting incidents is the important step for efficient incident management which aims to minimize the impact of non-recurrent congestion. A little research has been performed to automatically detect incidents in urban arterials. This paper provides incident detection system based on Support Vector Machine (SVM) in urban traffic networks using “Original urban network scenario” and “Freeway like scenario”; moreover, for the best performance of the classifier we introduce an optimization using genetic algorithm (GA). The results show that Genetic Algorithm Support Vector Machine (GA-SVM) has a high classification accuracy and high detection performance with regard to the detection rate and false alarm. A comparative study confirms that the effectiveness of GA-SVM mainly for signalized urban roads scenario.","PeriodicalId":184662,"journal":{"name":"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Incident detection in signalized urban roads based on genetic algorithm and support vector machine\",\"authors\":\"Mohamed Dardor, Mohammed Chlyah, J. Boumhidi\",\"doi\":\"10.1109/ISACV.2018.8354029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting incidents is the important step for efficient incident management which aims to minimize the impact of non-recurrent congestion. A little research has been performed to automatically detect incidents in urban arterials. This paper provides incident detection system based on Support Vector Machine (SVM) in urban traffic networks using “Original urban network scenario” and “Freeway like scenario”; moreover, for the best performance of the classifier we introduce an optimization using genetic algorithm (GA). The results show that Genetic Algorithm Support Vector Machine (GA-SVM) has a high classification accuracy and high detection performance with regard to the detection rate and false alarm. A comparative study confirms that the effectiveness of GA-SVM mainly for signalized urban roads scenario.\",\"PeriodicalId\":184662,\"journal\":{\"name\":\"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISACV.2018.8354029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISACV.2018.8354029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

侦测事故是有效管理事故的重要步骤,目的是尽量减少非经常性拥塞的影响。已经进行了一项小研究,以自动检测城市动脉中的事故。本文采用“原始城市网络场景”和“类高速公路场景”,提出了基于支持向量机的城市交通网络事件检测系统;此外,为了获得最佳的分类器性能,我们引入了一种使用遗传算法(GA)的优化方法。结果表明,遗传算法支持向量机(GA-SVM)在检测率和虚警方面具有较高的分类精度和检测性能。通过对比研究,证实了GA-SVM主要针对城市道路信号场景的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incident detection in signalized urban roads based on genetic algorithm and support vector machine
Detecting incidents is the important step for efficient incident management which aims to minimize the impact of non-recurrent congestion. A little research has been performed to automatically detect incidents in urban arterials. This paper provides incident detection system based on Support Vector Machine (SVM) in urban traffic networks using “Original urban network scenario” and “Freeway like scenario”; moreover, for the best performance of the classifier we introduce an optimization using genetic algorithm (GA). The results show that Genetic Algorithm Support Vector Machine (GA-SVM) has a high classification accuracy and high detection performance with regard to the detection rate and false alarm. A comparative study confirms that the effectiveness of GA-SVM mainly for signalized urban roads scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信