基于反馈线性化控制的自动神经网络模型选择算法

K. Vassiljeva, E. Petlenkov, J. Belikov
{"title":"基于反馈线性化控制的自动神经网络模型选择算法","authors":"K. Vassiljeva, E. Petlenkov, J. Belikov","doi":"10.1109/BEC.2010.5631152","DOIUrl":null,"url":null,"abstract":"For the best model identification a set of neural networks (NNs) must be trained. First of all it is necessary to obtain the optimal structure of the NN. In addition a good choice of the initial values of the NN parameters can be of tremendous help in a successful control application. Further fit of the model is evaluated using several control criteria, and the optimal among them is selected. This article presents an automated NN model selection method for control based on feedback linearization.","PeriodicalId":228594,"journal":{"name":"2010 12th Biennial Baltic Electronics Conference","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automated neural network model selection algorithm for feedback linearization based control\",\"authors\":\"K. Vassiljeva, E. Petlenkov, J. Belikov\",\"doi\":\"10.1109/BEC.2010.5631152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the best model identification a set of neural networks (NNs) must be trained. First of all it is necessary to obtain the optimal structure of the NN. In addition a good choice of the initial values of the NN parameters can be of tremendous help in a successful control application. Further fit of the model is evaluated using several control criteria, and the optimal among them is selected. This article presents an automated NN model selection method for control based on feedback linearization.\",\"PeriodicalId\":228594,\"journal\":{\"name\":\"2010 12th Biennial Baltic Electronics Conference\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 12th Biennial Baltic Electronics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BEC.2010.5631152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th Biennial Baltic Electronics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BEC.2010.5631152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了获得最佳的模型识别,必须训练一组神经网络(nn)。首先要得到神经网络的最优结构。此外,选择好神经网络参数的初始值对成功的控制应用有很大的帮助。利用多个控制准则对模型进行进一步的拟合评价,并从中选出最优的控制准则。提出了一种基于反馈线性化的自动神经网络模型选择方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated neural network model selection algorithm for feedback linearization based control
For the best model identification a set of neural networks (NNs) must be trained. First of all it is necessary to obtain the optimal structure of the NN. In addition a good choice of the initial values of the NN parameters can be of tremendous help in a successful control application. Further fit of the model is evaluated using several control criteria, and the optimal among them is selected. This article presents an automated NN model selection method for control based on feedback linearization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信