非参数系统辨识的局部多项式方法:改进与实验

M. Gevers, R. Pintelon, J. Schoukens
{"title":"非参数系统辨识的局部多项式方法:改进与实验","authors":"M. Gevers, R. Pintelon, J. Schoukens","doi":"10.1109/CDC.2011.6160311","DOIUrl":null,"url":null,"abstract":"The Local Polynomial Method (LPM) is a recently developed procedure for nonparametric estimation of the Frequency Response Function (FRF) of a linear system. Compared with other nonparametric FRF estimates based on windowing techniques, it has proved to be remarkably efficient in reducing the leakage errors caused by the application of Fourier transform techniques to non periodic data. In this paper we propose a modification of the LPM that takes account explicitly of constraints between the coefficients of the polynomials at neighbouring frequencies. This new variant contributes a new and significant reduction in the Mean Square Error of the FRF estimates. We also discuss the effects of the various design parameters on the accuracy of the estimates.","PeriodicalId":360068,"journal":{"name":"IEEE Conference on Decision and Control and European Control Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"The Local Polynomial Method for nonparametric system identification: Improvements and experimentation\",\"authors\":\"M. Gevers, R. Pintelon, J. Schoukens\",\"doi\":\"10.1109/CDC.2011.6160311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Local Polynomial Method (LPM) is a recently developed procedure for nonparametric estimation of the Frequency Response Function (FRF) of a linear system. Compared with other nonparametric FRF estimates based on windowing techniques, it has proved to be remarkably efficient in reducing the leakage errors caused by the application of Fourier transform techniques to non periodic data. In this paper we propose a modification of the LPM that takes account explicitly of constraints between the coefficients of the polynomials at neighbouring frequencies. This new variant contributes a new and significant reduction in the Mean Square Error of the FRF estimates. We also discuss the effects of the various design parameters on the accuracy of the estimates.\",\"PeriodicalId\":360068,\"journal\":{\"name\":\"IEEE Conference on Decision and Control and European Control Conference\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Conference on Decision and Control and European Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2011.6160311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Decision and Control and European Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2011.6160311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

局部多项式法(LPM)是近年来发展起来的一种线性系统频响函数的非参数估计方法。与其他基于加窗技术的非参数频域估计相比,该方法可以有效地降低傅里叶变换技术对非周期数据的泄漏误差。在本文中,我们提出了一种修正的LPM,它显式地考虑了邻近频率上多项式系数之间的约束。这种新的变体有助于显著降低频响估计的均方误差。我们还讨论了各种设计参数对估计精度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Local Polynomial Method for nonparametric system identification: Improvements and experimentation
The Local Polynomial Method (LPM) is a recently developed procedure for nonparametric estimation of the Frequency Response Function (FRF) of a linear system. Compared with other nonparametric FRF estimates based on windowing techniques, it has proved to be remarkably efficient in reducing the leakage errors caused by the application of Fourier transform techniques to non periodic data. In this paper we propose a modification of the LPM that takes account explicitly of constraints between the coefficients of the polynomials at neighbouring frequencies. This new variant contributes a new and significant reduction in the Mean Square Error of the FRF estimates. We also discuss the effects of the various design parameters on the accuracy of the estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信