心率变异性置换熵改进心电图睡眠呼吸暂停检测方法

A. Ravelo-García, U. Casanova-Blancas, S. Martín-González, E. Hernández-Pérez, P. Q. Morales, J. L. Navarro-Mesa
{"title":"心率变异性置换熵改进心电图睡眠呼吸暂停检测方法","authors":"A. Ravelo-García, U. Casanova-Blancas, S. Martín-González, E. Hernández-Pérez, P. Q. Morales, J. L. Navarro-Mesa","doi":"10.1109/IWOBI.2014.6913943","DOIUrl":null,"url":null,"abstract":"Permutation entropy obtained from heart rate variability (HRV) is analyzed in a statistical model integrating electrocardiogram derived respiratory (EDR) features and cepstrum coefficients in order to detect obstructive sleep apnea (OSA) events. 70 ECG recordings from Physionet database are divided into a learning set and a test set of equal size. Each set consists of 35 recordings, containing a single ECG signal. Each recording includes a set of reference annotations, one for each minute, which indicates the presence or absence of apnea during that minute. Statistical classification methods based on Logistic Regression (LR) is applied to the classification of sleep apnea epochs. EDR presents a sensitivity of 64.3% and specificity of 86.5% (auc=83.9). Cepstrum presents a sensitivity of 63.8% and specificity of 89.2% (auc=86). Contribution of the permutation entropy increases the performance of the LR model, playing an important role in the OSA quantification task. In particular, when all features are analyzed, classifier reaches a sensitivity of 70.2% and specificity of 91.8% (auc=89.8).","PeriodicalId":433659,"journal":{"name":"3rd IEEE International Work-Conference on Bioinspired Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Approach to the Improvement of Electrocardiogram-based Sleep Breathing Pauses Detection by means of Permutation Entropy of the Heart Rate Variability\",\"authors\":\"A. Ravelo-García, U. Casanova-Blancas, S. Martín-González, E. Hernández-Pérez, P. Q. Morales, J. L. Navarro-Mesa\",\"doi\":\"10.1109/IWOBI.2014.6913943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Permutation entropy obtained from heart rate variability (HRV) is analyzed in a statistical model integrating electrocardiogram derived respiratory (EDR) features and cepstrum coefficients in order to detect obstructive sleep apnea (OSA) events. 70 ECG recordings from Physionet database are divided into a learning set and a test set of equal size. Each set consists of 35 recordings, containing a single ECG signal. Each recording includes a set of reference annotations, one for each minute, which indicates the presence or absence of apnea during that minute. Statistical classification methods based on Logistic Regression (LR) is applied to the classification of sleep apnea epochs. EDR presents a sensitivity of 64.3% and specificity of 86.5% (auc=83.9). Cepstrum presents a sensitivity of 63.8% and specificity of 89.2% (auc=86). Contribution of the permutation entropy increases the performance of the LR model, playing an important role in the OSA quantification task. In particular, when all features are analyzed, classifier reaches a sensitivity of 70.2% and specificity of 91.8% (auc=89.8).\",\"PeriodicalId\":433659,\"journal\":{\"name\":\"3rd IEEE International Work-Conference on Bioinspired Intelligence\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3rd IEEE International Work-Conference on Bioinspired Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWOBI.2014.6913943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd IEEE International Work-Conference on Bioinspired Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOBI.2014.6913943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

为了检测阻塞性睡眠呼吸暂停(OSA)事件,利用心电图衍生呼吸(EDR)特征和倒谱系数的统计模型对心率变异性(HRV)获得的置换熵进行了分析。将来自Physionet数据库的70条ECG记录分为大小相等的学习集和测试集。每组包括35个记录,包含一个单一的心电信号。每个记录包括一组参考注释,每分钟一个,这表明在该分钟内存在或不存在呼吸暂停。采用基于Logistic回归(LR)的统计分类方法对睡眠呼吸暂停时间进行分类。EDR的敏感性为64.3%,特异性为86.5% (auc=83.9)。倒谱的敏感性为63.8%,特异性为89.2% (auc=86)。排列熵的贡献提高了LR模型的性能,在OSA量化任务中起着重要作用。特别是,当分析所有特征时,分类器的灵敏度达到70.2%,特异性达到91.8% (auc=89.8)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Approach to the Improvement of Electrocardiogram-based Sleep Breathing Pauses Detection by means of Permutation Entropy of the Heart Rate Variability
Permutation entropy obtained from heart rate variability (HRV) is analyzed in a statistical model integrating electrocardiogram derived respiratory (EDR) features and cepstrum coefficients in order to detect obstructive sleep apnea (OSA) events. 70 ECG recordings from Physionet database are divided into a learning set and a test set of equal size. Each set consists of 35 recordings, containing a single ECG signal. Each recording includes a set of reference annotations, one for each minute, which indicates the presence or absence of apnea during that minute. Statistical classification methods based on Logistic Regression (LR) is applied to the classification of sleep apnea epochs. EDR presents a sensitivity of 64.3% and specificity of 86.5% (auc=83.9). Cepstrum presents a sensitivity of 63.8% and specificity of 89.2% (auc=86). Contribution of the permutation entropy increases the performance of the LR model, playing an important role in the OSA quantification task. In particular, when all features are analyzed, classifier reaches a sensitivity of 70.2% and specificity of 91.8% (auc=89.8).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信