基于遗传算法和神经网络的电力系统结构控制

A. Ishigame, Y. Takagi, S. Kawamoto, T. Taniguchi, H. Tanaka
{"title":"基于遗传算法和神经网络的电力系统结构控制","authors":"A. Ishigame, Y. Takagi, S. Kawamoto, T. Taniguchi, H. Tanaka","doi":"10.1109/ANN.1993.264295","DOIUrl":null,"url":null,"abstract":"This paper presents a method of structural control of electric power networks for improving their stability. The method is based on the FACTS concept, a genetic algorithm and neural network. FACTS equipment will provide some new ways for improving stability by controlling the reactance of transmission lines in terms of structure control of the power network. A case study with a multimachine power system is presented and discussed.<<ETX>>","PeriodicalId":121897,"journal":{"name":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Structural control based on genetic algorithm and neural network for electric power systems\",\"authors\":\"A. Ishigame, Y. Takagi, S. Kawamoto, T. Taniguchi, H. Tanaka\",\"doi\":\"10.1109/ANN.1993.264295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method of structural control of electric power networks for improving their stability. The method is based on the FACTS concept, a genetic algorithm and neural network. FACTS equipment will provide some new ways for improving stability by controlling the reactance of transmission lines in terms of structure control of the power network. A case study with a multimachine power system is presented and discussed.<<ETX>>\",\"PeriodicalId\":121897,\"journal\":{\"name\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANN.1993.264295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1993.264295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种提高电网稳定性的结构控制方法。该方法基于FACTS概念、遗传算法和神经网络。FACTS设备将在电网结构控制方面为通过控制输电线路的电抗来提高电网稳定性提供一些新的途径。并以多机电力系统为例进行了分析和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural control based on genetic algorithm and neural network for electric power systems
This paper presents a method of structural control of electric power networks for improving their stability. The method is based on the FACTS concept, a genetic algorithm and neural network. FACTS equipment will provide some new ways for improving stability by controlling the reactance of transmission lines in terms of structure control of the power network. A case study with a multimachine power system is presented and discussed.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信