具有特殊膨胀矩阵的紧框架小波的性质

Fengjuan Zhu, Yong-dong Huang
{"title":"具有特殊膨胀矩阵的紧框架小波的性质","authors":"Fengjuan Zhu, Yong-dong Huang","doi":"10.1109/ICWAPR.2010.5576366","DOIUrl":null,"url":null,"abstract":"We study all generalized low-pass filters and tight frame wavelet with special dilation matrix M (M-TFW), where M satisfy Md = 2Id and generates the checkerboard lattice. Firstly, we study the pseudo-scaling function, generalized low-pass filters and multiresolution analysis tight frame wavelets with dilation matrix M(MRA M-TFW), and give some important characterization aboutthem. Then, we characterize all M-TFW by showing that they correspond precisely to those for which the dimension function is non-negative integer-valued","PeriodicalId":219884,"journal":{"name":"2010 International Conference on Wavelet Analysis and Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterizations of tight frame wavelets with special dilation matrices\",\"authors\":\"Fengjuan Zhu, Yong-dong Huang\",\"doi\":\"10.1109/ICWAPR.2010.5576366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study all generalized low-pass filters and tight frame wavelet with special dilation matrix M (M-TFW), where M satisfy Md = 2Id and generates the checkerboard lattice. Firstly, we study the pseudo-scaling function, generalized low-pass filters and multiresolution analysis tight frame wavelets with dilation matrix M(MRA M-TFW), and give some important characterization aboutthem. Then, we characterize all M-TFW by showing that they correspond precisely to those for which the dimension function is non-negative integer-valued\",\"PeriodicalId\":219884,\"journal\":{\"name\":\"2010 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2010.5576366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2010.5576366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了具有特殊膨胀矩阵M (M- tfw)的所有广义低通滤波器和紧框架小波,其中M满足Md = 2Id并生成棋盘格。首先,我们研究了伪尺度函数、广义低通滤波器和膨胀矩阵M(MRA M- tfw)的多分辨率分析紧框架小波,并给出了它们的一些重要性质。然后,我们通过证明它们精确地对应于那些维数函数是非负整数值的M-TFW来表征所有M-TFW
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizations of tight frame wavelets with special dilation matrices
We study all generalized low-pass filters and tight frame wavelet with special dilation matrix M (M-TFW), where M satisfy Md = 2Id and generates the checkerboard lattice. Firstly, we study the pseudo-scaling function, generalized low-pass filters and multiresolution analysis tight frame wavelets with dilation matrix M(MRA M-TFW), and give some important characterization aboutthem. Then, we characterize all M-TFW by showing that they correspond precisely to those for which the dimension function is non-negative integer-valued
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信