A. Miranskyy, Bora Caglayan, A. Bener, Enzo Cialini
{"title":"时间协作网络、维护活动和经验对缺陷暴露的影响","authors":"A. Miranskyy, Bora Caglayan, A. Bener, Enzo Cialini","doi":"10.1145/2652524.2652586","DOIUrl":null,"url":null,"abstract":"Context: Number of defects fixed in a given month is used as an input for several project management decisions such as release time, maintenance effort estimation and software quality assessment. Past activity of developers and testers may help us understand the future number of reported defects. Goal: To find a simple and easy to implement solution, predicting defect exposure. Method: We propose a temporal collaboration network model that uses the history of collaboration among developers, testers, and other issue originators to estimate the defect exposure for the next month. Results: Our empirical results show that temporal collaboration model could be used to predict the number of exposed defects in the next month with R2 values of 0.73. We also show that temporality gives a more realistic picture of collaboration network compared to a static one. Conclusions: We believe that our novel approach may be used to better plan for the upcoming releases, helping managers to make evidence based decisions.","PeriodicalId":124452,"journal":{"name":"International Symposium on Empirical Software Engineering and Measurement","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Effect of temporal collaboration network, maintenance activity, and experience on defect exposure\",\"authors\":\"A. Miranskyy, Bora Caglayan, A. Bener, Enzo Cialini\",\"doi\":\"10.1145/2652524.2652586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Context: Number of defects fixed in a given month is used as an input for several project management decisions such as release time, maintenance effort estimation and software quality assessment. Past activity of developers and testers may help us understand the future number of reported defects. Goal: To find a simple and easy to implement solution, predicting defect exposure. Method: We propose a temporal collaboration network model that uses the history of collaboration among developers, testers, and other issue originators to estimate the defect exposure for the next month. Results: Our empirical results show that temporal collaboration model could be used to predict the number of exposed defects in the next month with R2 values of 0.73. We also show that temporality gives a more realistic picture of collaboration network compared to a static one. Conclusions: We believe that our novel approach may be used to better plan for the upcoming releases, helping managers to make evidence based decisions.\",\"PeriodicalId\":124452,\"journal\":{\"name\":\"International Symposium on Empirical Software Engineering and Measurement\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Empirical Software Engineering and Measurement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2652524.2652586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Empirical Software Engineering and Measurement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2652524.2652586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of temporal collaboration network, maintenance activity, and experience on defect exposure
Context: Number of defects fixed in a given month is used as an input for several project management decisions such as release time, maintenance effort estimation and software quality assessment. Past activity of developers and testers may help us understand the future number of reported defects. Goal: To find a simple and easy to implement solution, predicting defect exposure. Method: We propose a temporal collaboration network model that uses the history of collaboration among developers, testers, and other issue originators to estimate the defect exposure for the next month. Results: Our empirical results show that temporal collaboration model could be used to predict the number of exposed defects in the next month with R2 values of 0.73. We also show that temporality gives a more realistic picture of collaboration network compared to a static one. Conclusions: We believe that our novel approach may be used to better plan for the upcoming releases, helping managers to make evidence based decisions.