{"title":"基于层次结构的大规模序列挖掘","authors":"Kaustubh Beedkar, Rainer Gemulla","doi":"10.1145/2723372.2723724","DOIUrl":null,"url":null,"abstract":"We propose LASH, a scalable, distributed algorithm for mining sequential patterns in the presence of hierarchies. LASH takes as input a collection of sequences, each composed of items from some application-specific vocabulary. In contrast to traditional approaches to sequence mining, the items in the vocabulary are arranged in a hierarchy: both input sequences and sequential patterns may consist of items from different levels of the hierarchy. Such hierarchies naturally occur in a number of applications including mining natural-language text, customer transactions, error logs, or event sequences. LASH is the first parallel algorithm for mining frequent sequences with hierarchies; it is designed to scale to very large datasets. At its heart, LASH partitions the data using a novel, hierarchy-aware variant of item-based partitioning and subsequently mines each partition independently and in parallel using a customized mining algorithm called pivot sequence miner. LASH is amenable to a MapReduce implementation; we propose effective and efficient algorithms for both the construction and the actual mining of partitions. Our experimental study on large real-world datasets suggest good scalability and run-time efficiency.","PeriodicalId":168391,"journal":{"name":"Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"LASH: Large-Scale Sequence Mining with Hierarchies\",\"authors\":\"Kaustubh Beedkar, Rainer Gemulla\",\"doi\":\"10.1145/2723372.2723724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose LASH, a scalable, distributed algorithm for mining sequential patterns in the presence of hierarchies. LASH takes as input a collection of sequences, each composed of items from some application-specific vocabulary. In contrast to traditional approaches to sequence mining, the items in the vocabulary are arranged in a hierarchy: both input sequences and sequential patterns may consist of items from different levels of the hierarchy. Such hierarchies naturally occur in a number of applications including mining natural-language text, customer transactions, error logs, or event sequences. LASH is the first parallel algorithm for mining frequent sequences with hierarchies; it is designed to scale to very large datasets. At its heart, LASH partitions the data using a novel, hierarchy-aware variant of item-based partitioning and subsequently mines each partition independently and in parallel using a customized mining algorithm called pivot sequence miner. LASH is amenable to a MapReduce implementation; we propose effective and efficient algorithms for both the construction and the actual mining of partitions. Our experimental study on large real-world datasets suggest good scalability and run-time efficiency.\",\"PeriodicalId\":168391,\"journal\":{\"name\":\"Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2723372.2723724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2723372.2723724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LASH: Large-Scale Sequence Mining with Hierarchies
We propose LASH, a scalable, distributed algorithm for mining sequential patterns in the presence of hierarchies. LASH takes as input a collection of sequences, each composed of items from some application-specific vocabulary. In contrast to traditional approaches to sequence mining, the items in the vocabulary are arranged in a hierarchy: both input sequences and sequential patterns may consist of items from different levels of the hierarchy. Such hierarchies naturally occur in a number of applications including mining natural-language text, customer transactions, error logs, or event sequences. LASH is the first parallel algorithm for mining frequent sequences with hierarchies; it is designed to scale to very large datasets. At its heart, LASH partitions the data using a novel, hierarchy-aware variant of item-based partitioning and subsequently mines each partition independently and in parallel using a customized mining algorithm called pivot sequence miner. LASH is amenable to a MapReduce implementation; we propose effective and efficient algorithms for both the construction and the actual mining of partitions. Our experimental study on large real-world datasets suggest good scalability and run-time efficiency.