Juan-Miguel Martínez, P. López, J. Duato, T. Pinkston
{"title":"虫洞网络中真正完全自适应路由的基于软件的死锁恢复技术","authors":"Juan-Miguel Martínez, P. López, J. Duato, T. Pinkston","doi":"10.1109/ICPP.1997.622586","DOIUrl":null,"url":null,"abstract":"In this paper, we take a different approach to handle deadlocks and performance degradation. We propose the use of an injection limitation mechanism that prevents performance degradation near the saturation point and reduces the probability of deadlock to negligible values even when fully adaptive routing is used. We also propose an improved deadlock detection mechanism that only uses local information, detects all the deadlocks, and considerably reduces the probability of false deadlock detection over previous proposals. In the rare case when impending deadlock is detected, our proposed recovery technique absorbs the deadlocked message at the current node and later re-injects it for continued routing towards its destination. Performance evaluation results show that our new approach to deadlock handling is more efficient than previously proposed techniques.","PeriodicalId":221761,"journal":{"name":"Proceedings of the 1997 International Conference on Parallel Processing (Cat. No.97TB100162)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Software-based deadlock recovery technique for true fully adaptive routing in wormhole networks\",\"authors\":\"Juan-Miguel Martínez, P. López, J. Duato, T. Pinkston\",\"doi\":\"10.1109/ICPP.1997.622586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we take a different approach to handle deadlocks and performance degradation. We propose the use of an injection limitation mechanism that prevents performance degradation near the saturation point and reduces the probability of deadlock to negligible values even when fully adaptive routing is used. We also propose an improved deadlock detection mechanism that only uses local information, detects all the deadlocks, and considerably reduces the probability of false deadlock detection over previous proposals. In the rare case when impending deadlock is detected, our proposed recovery technique absorbs the deadlocked message at the current node and later re-injects it for continued routing towards its destination. Performance evaluation results show that our new approach to deadlock handling is more efficient than previously proposed techniques.\",\"PeriodicalId\":221761,\"journal\":{\"name\":\"Proceedings of the 1997 International Conference on Parallel Processing (Cat. No.97TB100162)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1997 International Conference on Parallel Processing (Cat. No.97TB100162)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.1997.622586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1997 International Conference on Parallel Processing (Cat. No.97TB100162)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.1997.622586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Software-based deadlock recovery technique for true fully adaptive routing in wormhole networks
In this paper, we take a different approach to handle deadlocks and performance degradation. We propose the use of an injection limitation mechanism that prevents performance degradation near the saturation point and reduces the probability of deadlock to negligible values even when fully adaptive routing is used. We also propose an improved deadlock detection mechanism that only uses local information, detects all the deadlocks, and considerably reduces the probability of false deadlock detection over previous proposals. In the rare case when impending deadlock is detected, our proposed recovery technique absorbs the deadlocked message at the current node and later re-injects it for continued routing towards its destination. Performance evaluation results show that our new approach to deadlock handling is more efficient than previously proposed techniques.