基于接触式传感器的直线环境覆盖

Z. Butler, A. Rizzi, R. Hollis
{"title":"基于接触式传感器的直线环境覆盖","authors":"Z. Butler, A. Rizzi, R. Hollis","doi":"10.1109/ISIC.1999.796666","DOIUrl":null,"url":null,"abstract":"A variety of mobile robot tasks require complete coverage of an initially unknown environment, either as the entire task or as a way to generate a complete map for use during further missions. This is a problem known as sensor-based coverage, in which the robot's sensing is used to plan a path that reaches every point in the environment. A new algorithm, CC/sub R/, is presented here which works for robots with only contact sensing that operate in environments with rectilinear boundaries and obstacles. This algorithm uses a high-level rule-based feedback structure to direct coverage rather than a script in order to facilitate future extensions to a team of independent robots. The outline of a completeness proof of CC/sub R/ is also presented, which shows that it produces coverage of any of a large class of rectilinear environments. Implementation of CC/sub R/ in simulation is discussed, as well as the results of testing in a variety of world geometries and potential extensions to the algorithm.","PeriodicalId":300130,"journal":{"name":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":"{\"title\":\"Contact sensor-based coverage of rectilinear environments\",\"authors\":\"Z. Butler, A. Rizzi, R. Hollis\",\"doi\":\"10.1109/ISIC.1999.796666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A variety of mobile robot tasks require complete coverage of an initially unknown environment, either as the entire task or as a way to generate a complete map for use during further missions. This is a problem known as sensor-based coverage, in which the robot's sensing is used to plan a path that reaches every point in the environment. A new algorithm, CC/sub R/, is presented here which works for robots with only contact sensing that operate in environments with rectilinear boundaries and obstacles. This algorithm uses a high-level rule-based feedback structure to direct coverage rather than a script in order to facilitate future extensions to a team of independent robots. The outline of a completeness proof of CC/sub R/ is also presented, which shows that it produces coverage of any of a large class of rectilinear environments. Implementation of CC/sub R/ in simulation is discussed, as well as the results of testing in a variety of world geometries and potential extensions to the algorithm.\",\"PeriodicalId\":300130,\"journal\":{\"name\":\"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"88\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.1999.796666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1999.796666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

摘要

各种各样的移动机器人任务需要完全覆盖一个最初未知的环境,要么作为整个任务,要么作为一种生成完整地图的方式,供进一步任务使用。这是一个被称为基于传感器覆盖的问题,在这个问题中,机器人的感知被用来规划一条到达环境中每个点的路径。本文提出了一种新的算法CC/sub R/,该算法适用于在具有直线边界和障碍物的环境中仅具有接触传感的机器人。该算法使用高级的基于规则的反馈结构来指导覆盖,而不是脚本,以便于将来扩展到独立的机器人团队。给出了CC/sub R/的完备性证明的概要,证明了CC/sub R/的完备性可以覆盖任何一类直线环境。讨论了CC/sub / R/在仿真中的实现,以及在各种世界几何中的测试结果和该算法的潜在扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contact sensor-based coverage of rectilinear environments
A variety of mobile robot tasks require complete coverage of an initially unknown environment, either as the entire task or as a way to generate a complete map for use during further missions. This is a problem known as sensor-based coverage, in which the robot's sensing is used to plan a path that reaches every point in the environment. A new algorithm, CC/sub R/, is presented here which works for robots with only contact sensing that operate in environments with rectilinear boundaries and obstacles. This algorithm uses a high-level rule-based feedback structure to direct coverage rather than a script in order to facilitate future extensions to a team of independent robots. The outline of a completeness proof of CC/sub R/ is also presented, which shows that it produces coverage of any of a large class of rectilinear environments. Implementation of CC/sub R/ in simulation is discussed, as well as the results of testing in a variety of world geometries and potential extensions to the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信