{"title":"程度的平滑曲线的有限性\\ le 11美元,属\\勒3美元一般完整的二次和四次十字路口美元\\ mathbb {P} ^ 5美元","authors":"E. Ballico","doi":"10.33401/fujma.1069957","DOIUrl":null,"url":null,"abstract":"Let $W\\subset \\mathbb{P}^5$ be a general complete intersection of a quadric hypersurface and a quartic hypersurface. In this paper we prove that $W$ contains only finitely many smooth curves \n$C\\subset \\mathbb{P}^5$ such that $d:= \\deg ({C}) \\le 11$, $g:= p_a({C}) \\le 3$ and $h^1(\\mathcal{O} _C(1)) =0$.","PeriodicalId":199091,"journal":{"name":"Fundamental Journal of Mathematics and Applications","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The finiteness of smooth curves of degree $\\\\le 11$ and genus $\\\\le 3$ on a general complete intersection of a quadric and a quartic in $\\\\mathbb{P}^5$\",\"authors\":\"E. Ballico\",\"doi\":\"10.33401/fujma.1069957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $W\\\\subset \\\\mathbb{P}^5$ be a general complete intersection of a quadric hypersurface and a quartic hypersurface. In this paper we prove that $W$ contains only finitely many smooth curves \\n$C\\\\subset \\\\mathbb{P}^5$ such that $d:= \\\\deg ({C}) \\\\le 11$, $g:= p_a({C}) \\\\le 3$ and $h^1(\\\\mathcal{O} _C(1)) =0$.\",\"PeriodicalId\":199091,\"journal\":{\"name\":\"Fundamental Journal of Mathematics and Applications\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental Journal of Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33401/fujma.1069957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33401/fujma.1069957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The finiteness of smooth curves of degree $\le 11$ and genus $\le 3$ on a general complete intersection of a quadric and a quartic in $\mathbb{P}^5$
Let $W\subset \mathbb{P}^5$ be a general complete intersection of a quadric hypersurface and a quartic hypersurface. In this paper we prove that $W$ contains only finitely many smooth curves
$C\subset \mathbb{P}^5$ such that $d:= \deg ({C}) \le 11$, $g:= p_a({C}) \le 3$ and $h^1(\mathcal{O} _C(1)) =0$.