程度的平滑曲线的有限性\ le 11美元,属\勒3美元一般完整的二次和四次十字路口美元\ mathbb {P} ^ 5美元

E. Ballico
{"title":"程度的平滑曲线的有限性\\ le 11美元,属\\勒3美元一般完整的二次和四次十字路口美元\\ mathbb {P} ^ 5美元","authors":"E. Ballico","doi":"10.33401/fujma.1069957","DOIUrl":null,"url":null,"abstract":"Let $W\\subset \\mathbb{P}^5$ be a general complete intersection of a quadric hypersurface and a quartic hypersurface. In this paper we prove that $W$ contains only finitely many smooth curves \n$C\\subset \\mathbb{P}^5$ such that $d:= \\deg ({C}) \\le 11$, $g:= p_a({C}) \\le 3$ and $h^1(\\mathcal{O} _C(1)) =0$.","PeriodicalId":199091,"journal":{"name":"Fundamental Journal of Mathematics and Applications","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The finiteness of smooth curves of degree $\\\\le 11$ and genus $\\\\le 3$ on a general complete intersection of a quadric and a quartic in $\\\\mathbb{P}^5$\",\"authors\":\"E. Ballico\",\"doi\":\"10.33401/fujma.1069957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $W\\\\subset \\\\mathbb{P}^5$ be a general complete intersection of a quadric hypersurface and a quartic hypersurface. In this paper we prove that $W$ contains only finitely many smooth curves \\n$C\\\\subset \\\\mathbb{P}^5$ such that $d:= \\\\deg ({C}) \\\\le 11$, $g:= p_a({C}) \\\\le 3$ and $h^1(\\\\mathcal{O} _C(1)) =0$.\",\"PeriodicalId\":199091,\"journal\":{\"name\":\"Fundamental Journal of Mathematics and Applications\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental Journal of Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33401/fujma.1069957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33401/fujma.1069957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$W\子集\mathbb{P}^5$是二次超曲面与四次超曲面的一般完全交。本文证明了$W$只包含有限多条光滑曲线$C\子集\mathbb{P}^5$使得$d:= \deg ({C}) \le 11$, $g:= p_a({C}) \le 3$和$h^1(\mathcal{O} _C(1)) =0$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The finiteness of smooth curves of degree $\le 11$ and genus $\le 3$ on a general complete intersection of a quadric and a quartic in $\mathbb{P}^5$
Let $W\subset \mathbb{P}^5$ be a general complete intersection of a quadric hypersurface and a quartic hypersurface. In this paper we prove that $W$ contains only finitely many smooth curves $C\subset \mathbb{P}^5$ such that $d:= \deg ({C}) \le 11$, $g:= p_a({C}) \le 3$ and $h^1(\mathcal{O} _C(1)) =0$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信