保护隐私的数据发布

Ruilin Liu, Wendy Hui Wang
{"title":"保护隐私的数据发布","authors":"Ruilin Liu, Wendy Hui Wang","doi":"10.1109/ICDEW.2010.5452722","DOIUrl":null,"url":null,"abstract":"Data publishing has generated much concern on individual privacy. Recent work has focused on different background knowledge and their various threats to the privacy of published data. However, there still exist a few types of adversary knowledge waiting to be investigated. In this paper, I explain my research on privacy-preserving data publishing (PPDP) by using full functional dependencies (FFDs) as part of adversary knowledge. I also briefly explain my research plan.","PeriodicalId":442345,"journal":{"name":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Privacy-preserving data publishing\",\"authors\":\"Ruilin Liu, Wendy Hui Wang\",\"doi\":\"10.1109/ICDEW.2010.5452722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data publishing has generated much concern on individual privacy. Recent work has focused on different background knowledge and their various threats to the privacy of published data. However, there still exist a few types of adversary knowledge waiting to be investigated. In this paper, I explain my research on privacy-preserving data publishing (PPDP) by using full functional dependencies (FFDs) as part of adversary knowledge. I also briefly explain my research plan.\",\"PeriodicalId\":442345,\"journal\":{\"name\":\"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDEW.2010.5452722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2010.5452722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

数据发布引起了人们对个人隐私的极大关注。最近的工作集中在不同的背景知识及其对已发布数据隐私的各种威胁上。然而,仍然存在一些类型的对手知识有待研究。在本文中,我通过使用全功能依赖关系(ffd)作为对手知识的一部分来解释我对隐私保护数据发布(PPDP)的研究。我也简要说明了我的研究计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Privacy-preserving data publishing
Data publishing has generated much concern on individual privacy. Recent work has focused on different background knowledge and their various threats to the privacy of published data. However, there still exist a few types of adversary knowledge waiting to be investigated. In this paper, I explain my research on privacy-preserving data publishing (PPDP) by using full functional dependencies (FFDs) as part of adversary knowledge. I also briefly explain my research plan.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信