{"title":"在学术大数据中挖掘顾问与被顾问的关系:一种深度学习方法","authors":"Wei Wang, Jiaying Liu, Shuo Yu, Chenxin Zhang, Zhenzhen Xu, Feng Xia","doi":"10.1145/2910896.2925435","DOIUrl":null,"url":null,"abstract":"Mining advisor-advisee relationships can benefit many interesting applications such as advisor recommendation and protege performance analysis. Based on the hypothesis that, advisor-advisee relationships among researchers are hidden in scholarly big data, we propose in this work a deep learning based advisor-advisee relationship identification method which considers the personal properties and network characteristics with a stacked autoencoder model. To the best of our knowledge, this is the first time that a deep learning model is utilized to represent coauthor network features for relationships identification. Moreover, experiments demonstrate that the proposed method has better performance compared with other state-of-the-art methods.","PeriodicalId":109613,"journal":{"name":"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)","volume":"169 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Mining advisor-advisee relationships in scholarly big data: A deep learning approach\",\"authors\":\"Wei Wang, Jiaying Liu, Shuo Yu, Chenxin Zhang, Zhenzhen Xu, Feng Xia\",\"doi\":\"10.1145/2910896.2925435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mining advisor-advisee relationships can benefit many interesting applications such as advisor recommendation and protege performance analysis. Based on the hypothesis that, advisor-advisee relationships among researchers are hidden in scholarly big data, we propose in this work a deep learning based advisor-advisee relationship identification method which considers the personal properties and network characteristics with a stacked autoencoder model. To the best of our knowledge, this is the first time that a deep learning model is utilized to represent coauthor network features for relationships identification. Moreover, experiments demonstrate that the proposed method has better performance compared with other state-of-the-art methods.\",\"PeriodicalId\":109613,\"journal\":{\"name\":\"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)\",\"volume\":\"169 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2910896.2925435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2910896.2925435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mining advisor-advisee relationships in scholarly big data: A deep learning approach
Mining advisor-advisee relationships can benefit many interesting applications such as advisor recommendation and protege performance analysis. Based on the hypothesis that, advisor-advisee relationships among researchers are hidden in scholarly big data, we propose in this work a deep learning based advisor-advisee relationship identification method which considers the personal properties and network characteristics with a stacked autoencoder model. To the best of our knowledge, this is the first time that a deep learning model is utilized to represent coauthor network features for relationships identification. Moreover, experiments demonstrate that the proposed method has better performance compared with other state-of-the-art methods.