基于rss的无线传感器网络室内定位方案的性能评价

Aiman Ibrahim, S. Rahim, H. Mohamad
{"title":"基于rss的无线传感器网络室内定位方案的性能评价","authors":"Aiman Ibrahim, S. Rahim, H. Mohamad","doi":"10.1109/MICC.2015.7725451","DOIUrl":null,"url":null,"abstract":"A popular way of achieving WSN localization is through measurements and evaluation of Received Signal Strength (RSS) values of the signal transmitted by target mobile nodes. However, indoor localization presents a greater challenge due to occurrences of more severe propagation behaviors depending on the parameters of the environment. Artificial Neural Network (ANN) presents a method of adaptive processing of location specific non-linear indoor signal propagation. This paper evaluates the performance of three different methods of ANN family for indoor localization scheme. Data from the simulated propagation model are preprocessed into median, average, min and max values providing a strategic pattern to feed as inputs into the ANNs. The performance of location predicted with Elman Backpropagation (EB), Cascade-Forward Backpropagation (CFB) and Feedforward Backpropagation (FFB) show root mean square error (RMSE) of 0.4991m, 0.5257m and 0.6506m respectively with distance range of 100m.","PeriodicalId":225244,"journal":{"name":"2015 IEEE 12th Malaysia International Conference on Communications (MICC)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Performance evaluation of RSS-based WSN indoor localization scheme using artificial neural network schemes\",\"authors\":\"Aiman Ibrahim, S. Rahim, H. Mohamad\",\"doi\":\"10.1109/MICC.2015.7725451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A popular way of achieving WSN localization is through measurements and evaluation of Received Signal Strength (RSS) values of the signal transmitted by target mobile nodes. However, indoor localization presents a greater challenge due to occurrences of more severe propagation behaviors depending on the parameters of the environment. Artificial Neural Network (ANN) presents a method of adaptive processing of location specific non-linear indoor signal propagation. This paper evaluates the performance of three different methods of ANN family for indoor localization scheme. Data from the simulated propagation model are preprocessed into median, average, min and max values providing a strategic pattern to feed as inputs into the ANNs. The performance of location predicted with Elman Backpropagation (EB), Cascade-Forward Backpropagation (CFB) and Feedforward Backpropagation (FFB) show root mean square error (RMSE) of 0.4991m, 0.5257m and 0.6506m respectively with distance range of 100m.\",\"PeriodicalId\":225244,\"journal\":{\"name\":\"2015 IEEE 12th Malaysia International Conference on Communications (MICC)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 12th Malaysia International Conference on Communications (MICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MICC.2015.7725451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th Malaysia International Conference on Communications (MICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICC.2015.7725451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

实现WSN定位的一种常用方法是通过测量和评估目标移动节点传输的信号的接收信号强度(RSS)值。然而,室内定位提出了更大的挑战,因为根据环境参数会发生更严重的传播行为。人工神经网络(ANN)提出了一种定位非线性室内信号传播的自适应处理方法。本文对室内定位方案中三种不同ANN族方法的性能进行了评价。来自模拟传播模型的数据被预处理成中值、平均值、最小值和最大值,提供一个策略模式作为人工神经网络的输入。Elman反向传播(EB)、级联前向反向传播(CFB)和前馈反向传播(FFB)在距离范围为100m时的位置预测性能均方根误差(RMSE)分别为0.4991m、0.5257m和0.6506m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance evaluation of RSS-based WSN indoor localization scheme using artificial neural network schemes
A popular way of achieving WSN localization is through measurements and evaluation of Received Signal Strength (RSS) values of the signal transmitted by target mobile nodes. However, indoor localization presents a greater challenge due to occurrences of more severe propagation behaviors depending on the parameters of the environment. Artificial Neural Network (ANN) presents a method of adaptive processing of location specific non-linear indoor signal propagation. This paper evaluates the performance of three different methods of ANN family for indoor localization scheme. Data from the simulated propagation model are preprocessed into median, average, min and max values providing a strategic pattern to feed as inputs into the ANNs. The performance of location predicted with Elman Backpropagation (EB), Cascade-Forward Backpropagation (CFB) and Feedforward Backpropagation (FFB) show root mean square error (RMSE) of 0.4991m, 0.5257m and 0.6506m respectively with distance range of 100m.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信