{"title":"cucker - small模型的一维连续版控制*","authors":"B. Piccoli, Francesco Rossi, E. Trélat","doi":"10.1109/ACC.2015.7170907","DOIUrl":null,"url":null,"abstract":"The well-known Cucker-Smale model is a microscopic system reproducing the alignment of velocities in a group of autonomous agents. Here, we focus on its mean-field limit, which we call the continuous Cucker-Smale model. It is a transport partial differential equation with nonlocal terms. For some choices of the parameters in the Cucker-Smale model (and the continuous one), alignment is not ensured for some initial configurations, therefore it is natural to study the enforcing of alignment via an external force. We provide a control strategy enforcing alignment for every initial data and acting only on a small portion of the crowd at each time. This is an adapted version of the sparse control for a finite number of agent, that is the constraint of acting on a small number of agents at each time.","PeriodicalId":223665,"journal":{"name":"2015 American Control Conference (ACC)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Control of the 1D continuous version of the Cucker-Smale model*\",\"authors\":\"B. Piccoli, Francesco Rossi, E. Trélat\",\"doi\":\"10.1109/ACC.2015.7170907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The well-known Cucker-Smale model is a microscopic system reproducing the alignment of velocities in a group of autonomous agents. Here, we focus on its mean-field limit, which we call the continuous Cucker-Smale model. It is a transport partial differential equation with nonlocal terms. For some choices of the parameters in the Cucker-Smale model (and the continuous one), alignment is not ensured for some initial configurations, therefore it is natural to study the enforcing of alignment via an external force. We provide a control strategy enforcing alignment for every initial data and acting only on a small portion of the crowd at each time. This is an adapted version of the sparse control for a finite number of agent, that is the constraint of acting on a small number of agents at each time.\",\"PeriodicalId\":223665,\"journal\":{\"name\":\"2015 American Control Conference (ACC)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2015.7170907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2015.7170907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Control of the 1D continuous version of the Cucker-Smale model*
The well-known Cucker-Smale model is a microscopic system reproducing the alignment of velocities in a group of autonomous agents. Here, we focus on its mean-field limit, which we call the continuous Cucker-Smale model. It is a transport partial differential equation with nonlocal terms. For some choices of the parameters in the Cucker-Smale model (and the continuous one), alignment is not ensured for some initial configurations, therefore it is natural to study the enforcing of alignment via an external force. We provide a control strategy enforcing alignment for every initial data and acting only on a small portion of the crowd at each time. This is an adapted version of the sparse control for a finite number of agent, that is the constraint of acting on a small number of agents at each time.