一种广义Apagodu-Zeilberger算法

Shaoshi Chen, Manuel Kauers, C. Koutschan
{"title":"一种广义Apagodu-Zeilberger算法","authors":"Shaoshi Chen, Manuel Kauers, C. Koutschan","doi":"10.1145/2608628.2608641","DOIUrl":null,"url":null,"abstract":"The Apagodu-Zeilberger algorithm can be used for computing annihilating operators for definite sums over hypergeometric terms, or for definite integrals over hyperexponential functions. In this paper, we propose a generalization of this algorithm which is applicable to arbitrary Δ-finite functions. In analogy to the hypergeometric case, we introduce the notion of proper Δ-finite functions. We show that the algorithm always succeeds for these functions, and we give a tight a priori bound for the order of the output operator.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A generalized Apagodu-Zeilberger algorithm\",\"authors\":\"Shaoshi Chen, Manuel Kauers, C. Koutschan\",\"doi\":\"10.1145/2608628.2608641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Apagodu-Zeilberger algorithm can be used for computing annihilating operators for definite sums over hypergeometric terms, or for definite integrals over hyperexponential functions. In this paper, we propose a generalization of this algorithm which is applicable to arbitrary Δ-finite functions. In analogy to the hypergeometric case, we introduce the notion of proper Δ-finite functions. We show that the algorithm always succeeds for these functions, and we give a tight a priori bound for the order of the output operator.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2608628.2608641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

Apagodu-Zeilberger算法可用于计算超几何项上的定和或超指数函数上的定积分的湮灭算子。在本文中,我们提出了该算法的推广,适用于任意Δ-finite函数。与超几何情况类似,我们引入固有Δ-finite函数的概念。我们证明了该算法对于这些函数总是成功的,并给出了输出操作符阶数的严格先验界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalized Apagodu-Zeilberger algorithm
The Apagodu-Zeilberger algorithm can be used for computing annihilating operators for definite sums over hypergeometric terms, or for definite integrals over hyperexponential functions. In this paper, we propose a generalization of this algorithm which is applicable to arbitrary Δ-finite functions. In analogy to the hypergeometric case, we introduce the notion of proper Δ-finite functions. We show that the algorithm always succeeds for these functions, and we give a tight a priori bound for the order of the output operator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信