基于频谱图的卷积神经网络自动调制识别

Sinjin Jeong, Uhyeon Lee, S. Kim
{"title":"基于频谱图的卷积神经网络自动调制识别","authors":"Sinjin Jeong, Uhyeon Lee, S. Kim","doi":"10.1109/ICUFN.2018.8436654","DOIUrl":null,"url":null,"abstract":"We study a system for classifying modulation types with spectrograms obtained through short-time Fourier transform. AWGN-based carrier modulated signals and their spectrograms are generated. In order to extract features from spectrogram automatically, we learned our convolutional neural network model with the generated data. Even at low SNRs, the performance is fairly good, but additional modulation type applications and comparisons with others in various environments are necessary.","PeriodicalId":224367,"journal":{"name":"2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Spectrogram-Based Automatic Modulation Recognition Using Convolutional Neural Network\",\"authors\":\"Sinjin Jeong, Uhyeon Lee, S. Kim\",\"doi\":\"10.1109/ICUFN.2018.8436654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a system for classifying modulation types with spectrograms obtained through short-time Fourier transform. AWGN-based carrier modulated signals and their spectrograms are generated. In order to extract features from spectrogram automatically, we learned our convolutional neural network model with the generated data. Even at low SNRs, the performance is fairly good, but additional modulation type applications and comparisons with others in various environments are necessary.\",\"PeriodicalId\":224367,\"journal\":{\"name\":\"2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUFN.2018.8436654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUFN.2018.8436654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

研究了一种利用短时傅里叶变换得到的频谱图对调制类型进行分类的系统。生成基于awgn的载波调制信号及其频谱图。为了从谱图中自动提取特征,我们利用生成的数据学习卷积神经网络模型。即使在低信噪比下,性能也相当好,但需要额外的调制类型应用和在各种环境下与其他调制类型进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectrogram-Based Automatic Modulation Recognition Using Convolutional Neural Network
We study a system for classifying modulation types with spectrograms obtained through short-time Fourier transform. AWGN-based carrier modulated signals and their spectrograms are generated. In order to extract features from spectrogram automatically, we learned our convolutional neural network model with the generated data. Even at low SNRs, the performance is fairly good, but additional modulation type applications and comparisons with others in various environments are necessary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信