{"title":"带度约束的图","authors":"Élie de Panafieu, Lander Ramos","doi":"10.1137/1.9781611974324.4","DOIUrl":null,"url":null,"abstract":"Given a set D of nonnegative integers, we derive the asymptotic number of graphs with a givenvnumber of vertices, edges, and such that the degree of every vertex is in D. This generalizes existing results, such as the enumeration of graphs with a given minimum degree, and establishes new ones, such as the enumeration of Euler graphs, i.e. where all vertices have an even degree. Those results are derived using analytic combinatorics.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Graphs with degree constraints\",\"authors\":\"Élie de Panafieu, Lander Ramos\",\"doi\":\"10.1137/1.9781611974324.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a set D of nonnegative integers, we derive the asymptotic number of graphs with a givenvnumber of vertices, edges, and such that the degree of every vertex is in D. This generalizes existing results, such as the enumeration of graphs with a given minimum degree, and establishes new ones, such as the enumeration of Euler graphs, i.e. where all vertices have an even degree. Those results are derived using analytic combinatorics.\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611974324.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611974324.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Given a set D of nonnegative integers, we derive the asymptotic number of graphs with a givenvnumber of vertices, edges, and such that the degree of every vertex is in D. This generalizes existing results, such as the enumeration of graphs with a given minimum degree, and establishes new ones, such as the enumeration of Euler graphs, i.e. where all vertices have an even degree. Those results are derived using analytic combinatorics.