基于置信区间的样本量确定公式和分层数据的一些数学特性。

S. Usami
{"title":"基于置信区间的样本量确定公式和分层数据的一些数学特性。","authors":"S. Usami","doi":"10.1111/bmsp.12181","DOIUrl":null,"url":null,"abstract":"The use of hierarchical data (also called multilevel data or clustered data) is common in behavioural and psychological research when data of lower-level units (e.g., students, clients, repeated measures) are nested within clusters or higher-level units (e.g., classes, hospitals, individuals). Over the past 25 years we have seen great advances in methods for computing the sample sizes needed to obtain the desired statistical properties for such data in experimental evaluations. The present research provides closed-form and iterative formulas for sample size determination that can be used to ensure the desired width of confidence intervals for hierarchical data. Formulas are provided for a four-level hierarchical linear model that assumes slope variances and inclusion of covariates under both balanced and unbalanced designs. In addition, we address several mathematical properties relating to sample size determination for hierarchical data via the standard errors of experimental effect estimates. These include the relative impact of several indices (e.g., random intercept or slope variance at each level) on standard errors, asymptotic standard errors, minimum required values at the highest level, and generalized expressions of standard errors for designs with any-level randomization under any number of levels. In particular, information on the minimum required values will help researchers to minimize the risk of conducting experiments that are statistically unlikely to show the presence of an experimental effect.","PeriodicalId":272649,"journal":{"name":"The British journal of mathematical and statistical psychology","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Confidence interval-based sample size determination formulas and some mathematical properties for hierarchical data.\",\"authors\":\"S. Usami\",\"doi\":\"10.1111/bmsp.12181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of hierarchical data (also called multilevel data or clustered data) is common in behavioural and psychological research when data of lower-level units (e.g., students, clients, repeated measures) are nested within clusters or higher-level units (e.g., classes, hospitals, individuals). Over the past 25 years we have seen great advances in methods for computing the sample sizes needed to obtain the desired statistical properties for such data in experimental evaluations. The present research provides closed-form and iterative formulas for sample size determination that can be used to ensure the desired width of confidence intervals for hierarchical data. Formulas are provided for a four-level hierarchical linear model that assumes slope variances and inclusion of covariates under both balanced and unbalanced designs. In addition, we address several mathematical properties relating to sample size determination for hierarchical data via the standard errors of experimental effect estimates. These include the relative impact of several indices (e.g., random intercept or slope variance at each level) on standard errors, asymptotic standard errors, minimum required values at the highest level, and generalized expressions of standard errors for designs with any-level randomization under any number of levels. In particular, information on the minimum required values will help researchers to minimize the risk of conducting experiments that are statistically unlikely to show the presence of an experimental effect.\",\"PeriodicalId\":272649,\"journal\":{\"name\":\"The British journal of mathematical and statistical psychology\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The British journal of mathematical and statistical psychology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/bmsp.12181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The British journal of mathematical and statistical psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/bmsp.12181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

分层数据(也称多层数据或聚类数据)的使用在行为学和心理学研究中很常见,即低层单位(如学生、客户、重复测量)的数据嵌套在聚类或高层单位(如班级、医院、个人)中。在过去的 25 年中,我们看到了计算样本量的方法取得了巨大进步,这些方法可以在实验评估中获得此类数据所需的统计特性。本研究提供了确定样本大小的闭式和迭代公式,可用于确保分层数据的置信区间达到所需的宽度。本研究提供的公式适用于四级分层线性模型,该模型假定斜率方差,并包含平衡和非平衡设计下的协变量。此外,我们还通过实验效应估计值的标准误差,讨论了与确定分层数据样本大小有关的几个数学特性。这些特性包括若干指数(如各层次的随机截距或斜率方差)对标准误差的相对影响、渐近标准误差、最高层次的最低要求值,以及在任意层次数下采用任意层次随机化设计的标准误差的广义表达式。特别是,有关最低要求值的信息将有助于研究人员最大限度地降低进行在统计上不可能显示出实验效应的实验的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Confidence interval-based sample size determination formulas and some mathematical properties for hierarchical data.
The use of hierarchical data (also called multilevel data or clustered data) is common in behavioural and psychological research when data of lower-level units (e.g., students, clients, repeated measures) are nested within clusters or higher-level units (e.g., classes, hospitals, individuals). Over the past 25 years we have seen great advances in methods for computing the sample sizes needed to obtain the desired statistical properties for such data in experimental evaluations. The present research provides closed-form and iterative formulas for sample size determination that can be used to ensure the desired width of confidence intervals for hierarchical data. Formulas are provided for a four-level hierarchical linear model that assumes slope variances and inclusion of covariates under both balanced and unbalanced designs. In addition, we address several mathematical properties relating to sample size determination for hierarchical data via the standard errors of experimental effect estimates. These include the relative impact of several indices (e.g., random intercept or slope variance at each level) on standard errors, asymptotic standard errors, minimum required values at the highest level, and generalized expressions of standard errors for designs with any-level randomization under any number of levels. In particular, information on the minimum required values will help researchers to minimize the risk of conducting experiments that are statistically unlikely to show the presence of an experimental effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信