基于Frangi2D二值模式的年龄不变人脸识别

Sabah Afroze, M. Beham, Tamilselvi Rajendran, S. M. A. Maraikkayar, K. Rajakumar
{"title":"基于Frangi2D二值模式的年龄不变人脸识别","authors":"Sabah Afroze, M. Beham, Tamilselvi Rajendran, S. M. A. Maraikkayar, K. Rajakumar","doi":"10.1145/3313950.3313961","DOIUrl":null,"url":null,"abstract":"The field of computer vision is devoted to discovering algorithms, data representations and computer architectures that embody the principles underlying visual capabilities. Computer vision is an interdisciplinary field that deals with how computers can be made for gaining high level understanding from digital images or videos. While very promising result has been shown on face recognition related problems, age invariant face recognition still relics a challenge. Facial appearance of a human varies over time, which results in substantial intra-class variations. In order to address this problem, we propose Frangi2D method for normalization, Linear Binary pattern (LBP) for feature extraction and Sparse Representation Classifier (SRC). Extensive results on a well-known public domain face aging dataset: MORPH. The experimental results show the superiority of our proposed method in age invariant face recognition.","PeriodicalId":392037,"journal":{"name":"Proceedings of the 2nd International Conference on Image and Graphics Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Age invariant face recognition using Frangi2D binary pattern\",\"authors\":\"Sabah Afroze, M. Beham, Tamilselvi Rajendran, S. M. A. Maraikkayar, K. Rajakumar\",\"doi\":\"10.1145/3313950.3313961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The field of computer vision is devoted to discovering algorithms, data representations and computer architectures that embody the principles underlying visual capabilities. Computer vision is an interdisciplinary field that deals with how computers can be made for gaining high level understanding from digital images or videos. While very promising result has been shown on face recognition related problems, age invariant face recognition still relics a challenge. Facial appearance of a human varies over time, which results in substantial intra-class variations. In order to address this problem, we propose Frangi2D method for normalization, Linear Binary pattern (LBP) for feature extraction and Sparse Representation Classifier (SRC). Extensive results on a well-known public domain face aging dataset: MORPH. The experimental results show the superiority of our proposed method in age invariant face recognition.\",\"PeriodicalId\":392037,\"journal\":{\"name\":\"Proceedings of the 2nd International Conference on Image and Graphics Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Conference on Image and Graphics Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3313950.3313961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Image and Graphics Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3313950.3313961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

计算机视觉领域致力于发现体现视觉能力基本原理的算法、数据表示和计算机体系结构。计算机视觉是一个跨学科领域,研究如何使计算机能够从数字图像或视频中获得高层次的理解。尽管在人脸识别相关问题上已经取得了很好的成果,但年龄不变人脸识别仍然是一个挑战。人类的面部外观随着时间的推移而变化,这导致了大量的阶级内部差异。为了解决这个问题,我们提出了用于归一化的Frangi2D方法,用于特征提取的线性二进制模式(Linear Binary pattern, LBP)和用于稀疏表示分类器(Sparse Representation Classifier, SRC)。在一个著名的公共领域人脸老化数据集:MORPH上得到了广泛的结果。实验结果表明了该方法在年龄不变人脸识别中的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Age invariant face recognition using Frangi2D binary pattern
The field of computer vision is devoted to discovering algorithms, data representations and computer architectures that embody the principles underlying visual capabilities. Computer vision is an interdisciplinary field that deals with how computers can be made for gaining high level understanding from digital images or videos. While very promising result has been shown on face recognition related problems, age invariant face recognition still relics a challenge. Facial appearance of a human varies over time, which results in substantial intra-class variations. In order to address this problem, we propose Frangi2D method for normalization, Linear Binary pattern (LBP) for feature extraction and Sparse Representation Classifier (SRC). Extensive results on a well-known public domain face aging dataset: MORPH. The experimental results show the superiority of our proposed method in age invariant face recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信