基于稀疏表示和结构自相似性的盲图像去模糊

Jing Yu, Zhenchun Chang, Chuangbai Xiao, Weidong Sun
{"title":"基于稀疏表示和结构自相似性的盲图像去模糊","authors":"Jing Yu, Zhenchun Chang, Chuangbai Xiao, Weidong Sun","doi":"10.1109/ICASSP.2017.7952372","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a blind motion deblurring method based on sparse representation and structural self-similarity from a single image. The priors for sparse representation and structural self-similarity are explicitly added into the recovery of the latent image by means of sparse and multi-scale nonlocal regularizations, and the down-sampled version of the observed blurry image is used as training samples in the dictionary learning for sparse representation so that the sparsity of the latent image over this dictionary can be guaranteed, which implicitly makes use of multi-scale similar structures. Experimental results on both simulated and real blurry images demonstrate that our method outperforms existing state-of-the-art blind deblurring methods.","PeriodicalId":118243,"journal":{"name":"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Blind image deblurring based on sparse representation and structural self-similarity\",\"authors\":\"Jing Yu, Zhenchun Chang, Chuangbai Xiao, Weidong Sun\",\"doi\":\"10.1109/ICASSP.2017.7952372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a blind motion deblurring method based on sparse representation and structural self-similarity from a single image. The priors for sparse representation and structural self-similarity are explicitly added into the recovery of the latent image by means of sparse and multi-scale nonlocal regularizations, and the down-sampled version of the observed blurry image is used as training samples in the dictionary learning for sparse representation so that the sparsity of the latent image over this dictionary can be guaranteed, which implicitly makes use of multi-scale similar structures. Experimental results on both simulated and real blurry images demonstrate that our method outperforms existing state-of-the-art blind deblurring methods.\",\"PeriodicalId\":118243,\"journal\":{\"name\":\"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2017.7952372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2017.7952372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种基于稀疏表示和结构自相似性的单幅图像盲运动去模糊方法。通过稀疏化和多尺度非局部正则化将稀疏表示先验和结构自相似先验显式地加入到隐图像的恢复中,并将观测到的模糊图像的下采样版本作为稀疏表示字典学习的训练样本,从而保证隐图像在该字典上的稀疏性,这就隐含地利用了多尺度相似结构。在模拟和真实模糊图像上的实验结果表明,我们的方法优于现有的最先进的盲去模糊方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind image deblurring based on sparse representation and structural self-similarity
In this paper, we propose a blind motion deblurring method based on sparse representation and structural self-similarity from a single image. The priors for sparse representation and structural self-similarity are explicitly added into the recovery of the latent image by means of sparse and multi-scale nonlocal regularizations, and the down-sampled version of the observed blurry image is used as training samples in the dictionary learning for sparse representation so that the sparsity of the latent image over this dictionary can be guaranteed, which implicitly makes use of multi-scale similar structures. Experimental results on both simulated and real blurry images demonstrate that our method outperforms existing state-of-the-art blind deblurring methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信