微动脉瘤候选提取器的模拟退火优化投票方案

B. Antal, I. Lázár, A. Hajdu
{"title":"微动脉瘤候选提取器的模拟退火优化投票方案","authors":"B. Antal, I. Lázár, A. Hajdu","doi":"10.5220/0002988000800087","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel approach to improve microaneurysm candidate extraction in color fundus images. The individual algorithms published so far can be hardly considered in an automatic screening system. To improve further the sensitivity, specificity and image classification rate of microaneurysm detection, we propose an appropriate combination of individual algorithms. Thus, we investigate the detection of microaneurysms through the following phases: first, we use different approaches to extract microaneurysm candidates. Then, we select candidates voted by a sufficient number of the candidate extractor algorithms. The optimal number of votes and participating algorithms are determined by a simulated annealing algorithm. Finally, we classify the candidates with a machine-learning based approach by following the current literature recommendations. Our framework improves the positive likelihood ratio for the microaneurysms and outperforms both the state-of-the-art individual candidate extractors and microaneurysm detectors in these terms.","PeriodicalId":408116,"journal":{"name":"2010 International Conference on Signal Processing and Multimedia Applications (SIGMAP)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An optimal voting scheme for microaneurysm candidate extractors using simulated annealing\",\"authors\":\"B. Antal, I. Lázár, A. Hajdu\",\"doi\":\"10.5220/0002988000800087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel approach to improve microaneurysm candidate extraction in color fundus images. The individual algorithms published so far can be hardly considered in an automatic screening system. To improve further the sensitivity, specificity and image classification rate of microaneurysm detection, we propose an appropriate combination of individual algorithms. Thus, we investigate the detection of microaneurysms through the following phases: first, we use different approaches to extract microaneurysm candidates. Then, we select candidates voted by a sufficient number of the candidate extractor algorithms. The optimal number of votes and participating algorithms are determined by a simulated annealing algorithm. Finally, we classify the candidates with a machine-learning based approach by following the current literature recommendations. Our framework improves the positive likelihood ratio for the microaneurysms and outperforms both the state-of-the-art individual candidate extractors and microaneurysm detectors in these terms.\",\"PeriodicalId\":408116,\"journal\":{\"name\":\"2010 International Conference on Signal Processing and Multimedia Applications (SIGMAP)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Signal Processing and Multimedia Applications (SIGMAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0002988000800087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Signal Processing and Multimedia Applications (SIGMAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0002988000800087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了一种新的方法来改进彩色眼底图像中候选微动脉瘤的提取。迄今为止发表的单个算法很难在自动筛选系统中得到考虑。为了进一步提高微动脉瘤检测的灵敏度、特异性和图像分类率,我们提出了一种适当的组合算法。因此,我们通过以下几个阶段来研究微动脉瘤的检测:首先,我们使用不同的方法来提取候选微动脉瘤。然后,我们通过足够数量的候选提取算法投票选择候选。通过模拟退火算法确定最佳投票数和参与算法。最后,我们通过遵循当前文献建议,使用基于机器学习的方法对候选对象进行分类。我们的框架提高了微动脉瘤的正似然比,并且在这些方面优于最先进的单个候选提取器和微动脉瘤检测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An optimal voting scheme for microaneurysm candidate extractors using simulated annealing
In this paper, we present a novel approach to improve microaneurysm candidate extraction in color fundus images. The individual algorithms published so far can be hardly considered in an automatic screening system. To improve further the sensitivity, specificity and image classification rate of microaneurysm detection, we propose an appropriate combination of individual algorithms. Thus, we investigate the detection of microaneurysms through the following phases: first, we use different approaches to extract microaneurysm candidates. Then, we select candidates voted by a sufficient number of the candidate extractor algorithms. The optimal number of votes and participating algorithms are determined by a simulated annealing algorithm. Finally, we classify the candidates with a machine-learning based approach by following the current literature recommendations. Our framework improves the positive likelihood ratio for the microaneurysms and outperforms both the state-of-the-art individual candidate extractors and microaneurysm detectors in these terms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信