Abdullah Abdulhaque¹, Trond Kvamsdal, Mukesh Kumar, A. Kvarving
{"title":"高对流Boussinesq方程基准问题的自适应混合等几何分析","authors":"Abdullah Abdulhaque¹, Trond Kvamsdal, Mukesh Kumar, A. Kvarving","doi":"10.23967/admos.2023.045","DOIUrl":null,"url":null,"abstract":"In this article, we study a special benchmark problem for the Boussinesq equations. This is the Navier-Stokes equations coupled with the Advection-Diffusion equation, and it is used for modelling buoyancy-driven flow. The solution process is mixed isogeometric discretization combined with adaptive mesh refinement [4]. We discretize the equation system with the recently proposed isogeometric versions of the Taylor-Hood, Sub-Grid and Raviart-Thomas elements [1]. The adaptive refinement is based on LR B-splines [2] and recovery estimators [3]. We investigate the suitability of our adaptive methods for Rayleigh numbers in the range 10 1 -10 5 , by comparing with high-resolution reference solution.","PeriodicalId":414984,"journal":{"name":"XI International Conference on Adaptive Modeling and Simulation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive mixed isogeometric analysis of a highly convective benchmark problem for the Boussinesq equations\",\"authors\":\"Abdullah Abdulhaque¹, Trond Kvamsdal, Mukesh Kumar, A. Kvarving\",\"doi\":\"10.23967/admos.2023.045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study a special benchmark problem for the Boussinesq equations. This is the Navier-Stokes equations coupled with the Advection-Diffusion equation, and it is used for modelling buoyancy-driven flow. The solution process is mixed isogeometric discretization combined with adaptive mesh refinement [4]. We discretize the equation system with the recently proposed isogeometric versions of the Taylor-Hood, Sub-Grid and Raviart-Thomas elements [1]. The adaptive refinement is based on LR B-splines [2] and recovery estimators [3]. We investigate the suitability of our adaptive methods for Rayleigh numbers in the range 10 1 -10 5 , by comparing with high-resolution reference solution.\",\"PeriodicalId\":414984,\"journal\":{\"name\":\"XI International Conference on Adaptive Modeling and Simulation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"XI International Conference on Adaptive Modeling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23967/admos.2023.045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"XI International Conference on Adaptive Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/admos.2023.045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive mixed isogeometric analysis of a highly convective benchmark problem for the Boussinesq equations
In this article, we study a special benchmark problem for the Boussinesq equations. This is the Navier-Stokes equations coupled with the Advection-Diffusion equation, and it is used for modelling buoyancy-driven flow. The solution process is mixed isogeometric discretization combined with adaptive mesh refinement [4]. We discretize the equation system with the recently proposed isogeometric versions of the Taylor-Hood, Sub-Grid and Raviart-Thomas elements [1]. The adaptive refinement is based on LR B-splines [2] and recovery estimators [3]. We investigate the suitability of our adaptive methods for Rayleigh numbers in the range 10 1 -10 5 , by comparing with high-resolution reference solution.